• Title/Summary/Keyword: co-seismic

Search Result 358, Processing Time 0.025 seconds

A Study on the Estimation of Slope Stability under the Influence of the Vertical Direction Seismic Coefficient Using Lower Bound Analysis (하계해석을 이용한 수직방향 지진계수 영향에 따른 비탈면의 안정성 평가 연구)

  • Choi, Sang-Ho;Kim, Jong-Min;Kim, Yong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.12
    • /
    • pp.123-131
    • /
    • 2012
  • Recent earthquake records indicate that the vertical component of earthquake loading, generally neglected in seismic slope stability analysis, has a significant influence on the stability. This is particularly true for the earthquakes originating inside the continent, not from its boundaries. Therefore the design of geotechnical structures without consideration of vertical component of earthquake loading may result in unsafe design. In this study, with a consideration of the effect of vertical seismic loading, the horizontal yield seismic coefficients under various slope conditions are estimated, using the lower bound limit analysis. In addition, the equation for the determination of the critical direction (either upward or downward) of vertical seismic loading is proposed.

Seismic Performance Evaluation of Dry Precast Concrete Beam-Column Connections with Special Moment Frame Details (특수모멘트골조 상세를 갖는 건식 프리캐스트 콘크리트 보-기둥 접합부의 내진성능평가)

  • Kim, Seon Hoon;Lee, Deuck Hang;Kim, Yong Kyeom;Lee, Sang Won;Yeo, Un Yong;Park, Jung Eun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.5
    • /
    • pp.203-211
    • /
    • 2023
  • For fast-built and safe precast concrete (PC) construction, the dry mechanical splicing method is a critical technique that enables a self-sustaining system (SSS) during construction with no temporary support and minimizes onsite jobs. However, due to limited experimental evidence, traditional wet splicing methods are still dominantly adopted in the domestic precast industry. For PC beam-column connections, the current design code requires achieving emulative connection performances and corresponding structural integrity to be comparable with typical reinforced concrete (RC) systems with monolithic connections. To this end, this study conducted the standard material tests on mechanical splices to check their satisfactory performance as the Type 2 mechanical splice specified in the ACI 318 code. Two PC beam-column connection specimens with dry mechanical splices and an RC control specimen as the special moment frame were subsequently fabricated and tested under lateral reversed cyclic loadings. Test results showed that the seismic performances of all the PC specimens were fully comparable to the RC specimen in terms of strength, stiffness, energy dissipation, drift capacity, and failure mode, and their hysteresis responses showed a mitigated pinching effect compared to the control RC specimen. The seismic performances of the PC and RC specimens were evaluated quantitatively based on the ACI 374 report, and it appeared that all the test specimens fully satisfied the seismic performance criteria as a code-compliant special moment frame system.

Seismic Performance Evaluation of Dry Precast Concrete Beam-Column Connections With Intermediate Moment Frame Details (중간모멘트골조 상세를 갖는 건식 프리캐스트 콘크리트 보-기둥 접합부의 내진성능평가)

  • Kim, Seon Hoon;Cho, Jong;Oh, Hyo Keun;Choi, Seok Dong;Yeo, Un Yong;Lee, Deuck Hang
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.129-137
    • /
    • 2023
  • This study presents a dry precast concrete (PC) beam-column connection, and its target seismic performance level is set to be emulative to the reinforced concrete (RC) intermediate moment resisting frame system specified in ACI 318 and ASCE 7. The key features include self-sustaining ability during construction with the dry mechanical splicing method, enabling emulative connection performances and better constructability. Test specimens with code-compliant seismic details were fabricated and tested under reversed cyclic loading, which included a PC beam-column connection specimen with dry connections and an RC control specimen. The test results showed that all the specimens failed in a similar failure mode due to plastic deformations in beam members, while the hysteretic response curve of the PC specimen showed comparable and emulative performances compared to the RC specimen. Seismic performance evaluation was quantitatively addressed, and on this basis, it confirmed that the presented system can fully satisfy all the required performance for the intermediate RC moment resisting frame.

Seismic wave monitoring of $CO_2$ migration in water-saturated porous sandstone

  • Xue Ziqiu;Ohsumi Takashi
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.1
    • /
    • pp.25-32
    • /
    • 2004
  • We have carried out laboratory measurements of P-wave velocity and deformation strain during $CO_2$ injection into a porous sandstone sample, in dry and water-saturated conditions. The rock sample was cylindrical, with the axis normal to the bedding plane, and fluid injection was performed from one end. Using a piezoelectric transducer array system, we mapped fluid movement during injection of distilled water into dry sandstone, and of gaseous, liquid, and supercritical $CO_2$ into a water-saturated sample. The velocity changes caused by water injection ranged from $5.61\;to\;7.52\%$. The velocity changes caused by $CO_2$ injection are typically about $-6\%$, and about $-10\%$ for injection of supercritical $CO_2$, Such changes in velocity show that the seismic method may be useful in mapping $CO_2$ movement in the subsurface. Strain normal to the bedding plane was greater than strain parallel to the bedding plane during $CO_2$ injection; injection of supercritical $CO_2$ showed a particularly strong effect. Strain changes suggest the possibility of monitoring rock mass deformation by using borehole tiltmeters at geological sequestration sites. We also found differences associated with $CO_2$ phases in velocity and strain changes during injection.

Dynamic response and waterproof property of tunnel segmental lining subjected to earthquake action

  • Yan, Qixiang;Bao, Rui;Chen, Hang;Li, Binjia;Chen, Wenyu;Dai, Yongwen;Zhou, Hongyuan
    • Earthquakes and Structures
    • /
    • v.17 no.4
    • /
    • pp.411-424
    • /
    • 2019
  • In this study, a numerical model of a shield tunnel with an assembled segmental lining was built. The seismic response of the segmental lining of the section of the shield tunnel in Line 1 of the Chengdu Metro is analyzed as it passes through the interface of sand-cobble and mudstone layers. To do so, the node-stress seismic-motion input method was used to input the seismic motion measured during the 2008 Wenchuan earthquake, and the joint openings and dislocations associated with the earthquake action were obtained. With reference to the Ethylene-Propylene-Diene Monomer (EPDM) sealing gaskets used in the shield tunnels in the Chengdu Metro, numerical simulation was applied to analyze the contact pressure along the seepage paths and the waterproof property under different joint openings and dislocations. A laboratory test on the elastic sealing gasket was also conducted to study its waterproof property. The test results accord well with the numerical results and the occurrence of water seepage in the section of the shield tunnel in Line 1 of the Chengdu Metro during the 2008 Wenchuan earthquake was verified. These research results demonstrate the deformation of segmental joint under earthquake, also demonstrate the relationship between segmental joint deformation and waterproof property.

Seismic Performance Evaluation of An Old School Building Through Linear Analysis (선형구조해석을 통한 노후된 학교시설 내진성능평가)

  • LEE, Do Hyung;Kim, Taewan;Kim, Seung Re;Chu, Yurim;Kim, Hyun Sik
    • Journal of Industrial Technology
    • /
    • v.38 no.1
    • /
    • pp.21-27
    • /
    • 2018
  • In January 2018, the Ministry of Education published "Seismic design criteria for school buildings" and "Manual for seismic performance evaluation and retrofit of school buildings" to evaluate seismic performances through linear analysis. This paper evaluates the seismic performance of an old school building through the linear analysis. The target building was constructed in the late 1970s, and the seismic-force-resisting system was assumed to be a reinforced concrete moment frame with an un-reinforced masonry wall. As a result of the evaluation, the target building does not satisfy the 'life safety' level of 1.2 times the design spectrum. The average strength ratio of moment frames, an indicator of the level of seismic performance tends to be controlled by beams. However, through the Pohang earthquake, it was known that the short column effect caused by the partially infilled masonry wall caused shear failure of the columns in school buildings. Therefore, it is necessary to improve the linear analysis so that the column controls the average strength ratio of moment frames.

Performance Evaluation of Steel Moment Resisting Frames with Seismic Retrofit Using Fragility Contour Method (내진 보강된 철골모멘트골조의 취약성 등고선을 통한 성능평가)

  • Kim, Su Dong;Lee, Kihak;Jeong, Seong-Hoon;Kim, Do Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.33-41
    • /
    • 2013
  • Due to a high level of system ductility, steel moment resisting frames have been widely used for lateral force resisting structural systems in high seismic zones. Earthquake field investigations after Northridge earthquake in 1994 and Kobe earthquake in 1995 have reported that many steel moment resisting frames designed before 1990's had suffered significant damages and structural collapse. In this research, seismic performance assessment of steel moment resisting frames designed in accordance with the previous seismic provisions before 1990's was performed. Buckling-restrained braces and shear walls are considered for seismic retrofit of the reference buildings. Increasing stiffness and strength of the buildings using buckling-restrained braces and shear walls are considered as options to rehabilitate the damaged buildings. Probabilistic seismic performance assessment using fragility analysis results is used for the criteria for determining an appropriate seismic retrofit strategy. The fragility contour method can be used to provide an intial guideline to structural engineers when various structural retrofit options for the damaged buildings are available.

Displacement Charateristics of Caisson-Type Breakwater under Earthquake Loadings (지진하중을 받는 케이슨 방파제의 변위 특성분석)

  • Shin, Eun-Chul;Jeon, Jae-Ku;Lee, Joong-Hwa;Lee, Chung-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1258-1270
    • /
    • 2009
  • Recently, the earthquakes activities are more of frequency occurred in the country. In case of nomal or large magnitude earthquakes, which cause a rising number of life loss or widespread loss of property. It must be considered how to cope with the situperty of dpmage in the country ty account of ay earthquake. Consequently, the public works have currently ensured against a lot of risk about seismism not only on large scale structures but also relatively small structures. Therefore, in this study, in order to make the seismic stability safe, it has been evaluated by the seismic performance for caisson-type breakwater. The seismic response analyses have conducted on the caisson-type breaker under long-period, short-period and artificial seismic wave. The liquefaction potential of the foundation, which is caisson-type, is also estimated by using the simplified assessment method. Finally, the result of the numerical analysis by PENTAGON 2D finite element method(FEM) program are presented for 3 cases with time-history seismic analysis under the seismic load.

  • PDF