• Title/Summary/Keyword: co-rotational finite element

Search Result 28, Processing Time 0.023 seconds

Large displacement analysis of inelastic frame structures by convected material frame approach

  • Chiou, Yaw-Jeng;Wang, Yeon-Kang;Hsiao, Pang-An;Chen, Yi-Lung
    • Structural Engineering and Mechanics
    • /
    • v.13 no.2
    • /
    • pp.135-154
    • /
    • 2002
  • This paper presents the convected material frame approach to study the nonlinear behavior of inelastic frame structures. The convected material frame approach is a modification of the co-rotational approximation by incorporating an adaptive convected material frame in the basic definition of the displacement vector and strain tensor. In the formulation, each discrete element is associated with a local coordinate system that rotates and translates with the element. For each load increment, the corresponding strain-displacement and nodal force-stress relationships are defined in the updated local coordinates, and based on the updated element geometry. The rigid body motion and deformation displacements are decoupled for each increment. This modified approach incorporates the geometrical nonlinearities through the continuous updating of the material frame geometry. A generalized nonlinear function is used to derive the inelastic constitutive relation and the kinematic hardening is considered. The equation of motion is integrated by an explicit procedure and it involves only vector assemblage and vector storage in the analysis by assuming a lumped mass matrix of diagonal form. Several numerical examples are demonstrated in close agreement with the solutions obtained by the ANSYS code. Numerical studies show that the proposed approach is capable of investigating large deflection of inelastic planar structures and providing an excellent numerical performance.

A Study on the Behavioral Characteristics of Bellows for Expansion Joints (신축이음용 벨로우즈의 거동특성에 관한 연구)

  • Jeong, Doo-Hyung;Chin, Do-Hun;Kim, Byung-Tak
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.10
    • /
    • pp.52-58
    • /
    • 2020
  • Bellows are corrugated mechanical elements used to absorb displacements or vibrations caused by temperature changes, pressure, earthquakes, waves, etc., which are welded to flanges or directly connected to pipes. Expansion joint bellows must not only be designed to sufficiently withstand the internal pressure of the pipes but also accommodate axial, transverse, and rotational deformations to minimize the transfer of forces to the sensitive components of the system. Bellows have various types of corrugations, but U-type bellows are most commonly used in general piping systems. In this study, the behavior of U-shaped one-, two-, and three-ply bellows with the same inner diameter under pressure and forced displacement was analyzed using the finite element method. The results were compared with the design formula in the Expansion Joint Manufacturers Association (EJMA)'s code. Manufacturer data were used for the applied pressure and force displacement. The behavioral characteristics of the three cases were compared via structural analysis because the stress levels will be different for each model, even if they have the same inner diameter. Since the analytical model has an axisymmetric shape but displacement occurs in the transverse direction, the finite element model was composed of 1/2 of the whole model, and ANSYS Workbench 17.2 was employed for the analysis.

Behaviour of open beam-to-tubular column angle connections under combined loading conditions

  • Liu, Yanzhi;Malaga-Chuquitaype, Christian;Elghazouli, Ahmed Y.
    • Steel and Composite Structures
    • /
    • v.16 no.2
    • /
    • pp.157-185
    • /
    • 2014
  • This paper examines the behaviour of two types of practical open beam-to-tubular column connection details subjected to combined moment, axial and/or shear loads. Detailed continuum finite element models are developed and validated against available experimental results, and extended to deal with flexural, axial and shear load interactions. A numerical investigation is then carried out on the behaviour of selected connections with different stiffness and strength characteristics under various load combination scenarios. The influence of applied levels of axial tensile or compressive loads on the bending stiffness and capacity is examined and discussed. Additionally, the interaction effects between shear forces and co-existing bending and axial loads are examined and shown to be comparatively insignificant in terms of stiffness and capacity in most cases. It is also shown that the range of connections considered in this paper can provide rotational ductility levels in excess of those required under typical design scenarios. Based on these findings, a simplified component-based representation is proposed and described, and its ability to represent the connection response under combined loading is verified using results from detailed numerical simulations.

Development of Vibration Compensator for Vertical Vibration Damping of Ships (선박의 수직방향 진동 감쇠를 위한 진동보상기의 개발)

  • Jung, Min Je;Kim, Tae Ok;Ahn, Jung Hwan;Kim, Hwa Young
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.205-210
    • /
    • 2020
  • The aim of this study is to develop a vertical vibration compensator that attenuates the vertical vibration of ships. The vibration compensator was designed according to the principle of generating vertical excitation forces by rotating two eccentric bodies of the same mass in opposite directions at the same rotational speed. In addition, the structural stability was analyzed using the finite element method. The maximum stress in the drive shaft was 95.6 MPa, which was approximately 35% of the allowable stress of the shaft material (SM45C, 270 MPa). The acceleration signals of the vibrator compensator body and the testbed were determined to evaluate the efficiency of the vibration compensator and the designed excitation forces. Subsequently, the excitation forces were estimated based on the relationship between force and acceleration. The estimated results were very close to the theoretical values with an error of less than 3%.

Structural Analysis of a Suction Pad for a Removable Bike Carrier using Computational and Experimental Methods (탈착식 자전거 캐리어용 흡착 패드의 실험 및 전산적 방법을 활용한 구조해석)

  • Suh, Yeong Sung;Lim, Geun Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.622-628
    • /
    • 2016
  • As the suction pad-supporting bike carrier attached to a car may be subject to an excessive dynamic load due to random vibrations and centrifugal forces during driving, its structural safety is of great concern. To examine this, the finite-element method with a fluid-structure interaction should be used because the pressure on the pad bottom is changed in real time according to the fluctuations of the force or the moment applied on the pad. This method, however, has high computing costs in terms of modeling efforts and software expense. Moreover, the accuracy of computation is not easily guaranteed. Therefore, a new method combining the experiment and computation is proposed in this paper: the bottom pressure and contact area of the pad under varying loads was measured in real time and the acquired data are then used in the nonlinear elastic finite-element calculations. The computational and experimental results obtained with the product under development showed that the safety margin of the pad under the axial loading is relatively sufficient, whereas with an excessive rotational loading, the pad is vulnerable to separation or a local surface damage; hence, the safety margin may not be secured. The predicted contact behavior under the variation of the magnitude and type of the loading were in good agreement with the one from the experiment. The proposed analysis method in this study could be used in the design of similar vacuum pad systems.

Structural Design and Analysis of a Hydraulic Coiling Arm for Offshore Wind-turbine Submarine Cable (해상풍력 해저케이블 하역용 유압식 코일링 암 구조설계 및 해석)

  • Kim, Myung-Hwan;Kim, Dong-Hyun;Oh, Min-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • Structural design and analysis of a coiling arm unloading machine for submarine cable have been originally conducted in this study. Three-dimensional CAD modeling process is practically applied for the structural design in detail. Finite element method(FEM) and multi-body dynamics(MBD) analyses are also used to verify the safety and required motions of the designed coiling arm structure. The effective moving functions of the designed coiling arm with respect to rotational and radial motions are achieved by adopting bearing-roller mechanical parts and hydraulic system. Critical design loading conditions due to its self weight, carrying cables, offshore wind, and hydraulic system over operation conditions are considered for the present structural analyses. In addition, possible inclined ground conditions for the installation of the designed coiling arm are also considered to verify overturn stability. The present hydraulic type coiling arm system is originally designed and developed in this study. The developed coiling arm has been installed at a harbor, successfully tested its operational functions, and finished practical unloading mission of the submarine cable.

Development Test for Flexible PTO Shaft Made of Ti Alloy for Aircraft (Ti 합금을 이용한 항공기용 Flexible PTO 샤프트 개발 시험)

  • Lee, Joo Hong;Kang, Bo Sik;Yu, Hyun Seok;Lee, Ji Man;Cho, Hae Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.8
    • /
    • pp.759-765
    • /
    • 2016
  • The PTO (Power Take-Off) shaft for aircraft, with welded construction using multiple thin membranes, was developed in the 1950s to improve the elasticity of the part. As it is lightweight, stable at high speeds, and has good flexibility, it is used in most of the fighter aircraft. It connects the AMAD (aircraft mounted accessory drive) gearbox with the EMAD (engine mounted accessory drive) gearbox and transmits the rotational power between them. It operates in the high speed range of 10,000-18,000 rpm. In this study, the safety of the PTO shaft made of Ti alloy was investigated using finite element analysis, and the ability to transmit power was demonstrated through a high-cycle fatigue test conducted in a laboratory. Further, the life of the ball joints of the aircraft under high-cycle fatigue test conditions was predicted, and the wear characteristics were analyzed.

On the Use of Modal Derivatives for Reduced Order Modeling of a Geometrically Nonlinear Beam (모드 미분을 이용한 기하비선형 보의 축소 모델)

  • Jeong, Yong-Min;Kim, Jun-Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.4
    • /
    • pp.329-334
    • /
    • 2017
  • The structures, which are made up with the huge number of degrees-of-freedom and the assembly of substructures, have a great complexity. In order to increase the computational efficiency, the analysis models have to be simplified. Many substructuring techniques have been developed to simplify large-scale engineering problems. The techniques are very powerful for solving nonlinear problems which require many iterative calculations. In this paper, a modal derivatives-based model order reduction method, which is able to capture the stretching-bending coupling behavior in geometrically nonlinear systems, is adopted and investigated for its performance evaluation. The quadratic terms in nonlinear beam theory, such as Green-Lagrange strains, can be explained by the modal derivatives. They can be obtained by taking the modal directional derivatives of eigenmodes and form the second order terms of modal reduction basis. The method proposed is then applied to a co-rotational finite element formulation that is well-suited for geometrically nonlinear problems. Numerical results reveal that the end-shortening effect is very important, in which a conventional modal reduction method does not work unless the full model is used. It is demonstrated that the modal derivative approach yields the best compromised result and is very promising for substructuring large-scale geometrically nonlinear problems.