• Title/Summary/Keyword: co-operation performance

Search Result 675, Processing Time 0.03 seconds

Experimental Study of Metal Surface Wave Communication for Engine room of Vessels (선박 기관실에서의 금속체 표면파 통신 활용 연구)

  • Jin-Woo Kong;Hak-Sun Kim
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.108-109
    • /
    • 2022
  • In this study analyzed experimental data on noise interference caused by engine operating apply surface wave communication in the engine room. For the experiment, 7 areas of the engine room on 256 ton tug boat and measured noise during engine on off using signal analyzer for effect surface wave communication. In order to construct and actual communication network based on the analysis of the noise and confirm the characteristics of surface wave communication in the area made metal bulkheads the actual communication network installed communication equipment between three metal bulkheads and conducted a comparative experiment with wireless communication. The difference was confirmed. As a result, in the case of surface wave communication, there was no significant difference in the transmission and reception rates before and after engine operation in an environment with three bulkheads, but in the case of Wi-Fi using wireless, the performance deteriorated significantly during operation. was confirmed. As a result of analyzing the experimental data, it was confirmed that noise caused by engine operation affects wireless communication but does not affect surface wave communication. Therefore, even in the area with a lot of electromagnetic wave noise in the ship, when the surface wave communication system is configured using the ship's metal structure, it is possible to replace the wireless communication and furthermore, it is possible to apply the surface wave communication in the enclosed space and the engine room in the ship.

  • PDF

Recent Progress in Air Conditioning and Refrigeration Research - A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2004 and 2005 - (공기조화, 냉동 분야의 최근 연구 동향 -2004년 및 2005년 학회지 논문에 대한 종합적 고찰-)

  • Choi, Yong-Don;Kang, Yong-Tae;Kim, Nae-Hyun;Kim, Man-Hoe;Park, Kyoung-Kuhn;Park, Byung-Yoon;Park, Jin-Chul;Hong, Hi-Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.1
    • /
    • pp.94-131
    • /
    • 2007
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering in 2004 and 2005 has been done. Focus has been put on current status of research in the aspect of heating, cooling, air-conditioning, ventilation, sanitation and building environment. The conclusions are as follows. (1) Most of fundamental studies on fluid flow were related with heat transportation of facilities. Drop formation and rivulet flow on solid surfaces were interesting topics related with condensation augmentation. Research on micro environment considering flow, heat, humidity was also interesting for comfortable living environment. It can be extended considering biological aspects. Development of fans and blowers of high performance and low noise were continuing topics. Well developed CFD and flow visualization(PIV, PTV and LDV methods) technologies were widely applied for developing facilities and their systems. (2) The research trends of the previous two yews are surveyed as groups of natural convection, forced convection, electronic cooling, heat transfer enhancement, frosting and defrosting, thermal properties, etc. New research topics introduced include natural convection heat transfer enhancement using nanofluid, supercritical cooling performance or oil miscibility of $CO_2$, enthalpy heat exchanger for heat recovery, heat transfer enhancement in a plate heat exchanger using fluid resonance. (3) The literature for the last two years($2004{\sim}2005$) is reviewed in the areas of heat pump, ice and water storage, cycle analysis and reused energy including geothermal, solar and unused energy). The research on cycle analysis and experiments for $CO_2$ was extensively carried out to replace the Ozone depleting and global warming refrigerants such as HFC and HCFC refrigerants. From the year of 2005, the Gas Engine Heat Pump(GHP) has been paid attention from the viewpoint of the gas cooling application. The heat pipe was focused on the performance improvement by the parametric analysis and the heat recovery applications. The storage systems were studied on the performance enhancement of the storage tank and cost analysis for heating and cooling applications. In the area of unused energy, the hybrid systems were extensively introduced and the life cycle cost analysis(LCCA) for the unused energy systems was also intensively carried out. (4) Recent studies of various refrigeration and air-conditioning systems have focused on the system performance and efficiency enhancement. Heat transfer characteristics during evaporation and condensation are investigated for several tube shapes and of alternative refrigerants including carbon dioxide. Efficiency of various compressors and expansion devices are also dealt with for better modeling and, in particular, performance improvement. Thermoelectric module and cooling systems are analyzed theoretically and experimentally. (5) According to the review of recent studies on ventilation systems, an appropriate ventilation systems including machenical and natural are required to satisfied the level of IAQ. Also, an recent studies on air-conditioning and absorption refrigeration systems, it has mainly focused on distribution and dehumidification of indoor air to improve the performance were carried out. (6) Based on a review of recent studies on indoor environment and building service systems, it is noticed that research issues have mainly focused on optimal thermal comfort, improvement of indoor air Quality and many innovative systems such as air-barrier type perimeter-less system with UFAC, radiant floor heating and cooling system and etc. New approaches are highlighted for improving indoor environmental condition as well as minimizing energy consumption, various activities of building control and operation strategy and energy performance analysis for economic evaluation.

Analysis of Status of Researches on Korean National R&D : Research Fields and Their Network of Literatures in Domestic Journals (국가연구개발에 관한 연구현황 분석 - 국내 학술지 문헌의 연구 분야 및 분야 간 네트워크를 중심으로)

  • Lee, Cheol-Ju
    • Journal of Korea Technology Innovation Society
    • /
    • v.21 no.1
    • /
    • pp.201-235
    • /
    • 2018
  • With the recent slowdown of R&D budget growth rate, efficient resource allocation, operation and management of national R&D is becoming more important. At this point, recognizing the necessity of systematic and scientific research on the national R&D itself, this study analyzed previous researches on national R&D of Korea. In this study, based on the previous researches and laws, national R&D was classified according to the major stages such as planning, selection, management, performance and so on. Secondly, by using the classification criteria forged, previous researches on the national R&D published in domestic journals for the last 5 years were divided into 12 categories, and the status of researches in each field was analyzed. Lastly, through network analysis, linking status and influence of each fields were identified by using co-classification information of research literatures. As a result of this research, the performance related fields were the most active ones in terms of the number of research literatures, and connections with other fields, while the fields such as selection and infrastructure were lacking in the number of research and linkage. This study can find its meaning in identifying research fields that need more studies and connections with other areas by systematic analysis of previous studies on Korean National R&D.

A Study on the Usefulness of Development of a Steam Sterilizer Equipped with an Electronic Bowie-Dick Test System

  • Bae, Young Ok;Hwang, Jun Soo;Kim, Sung Il;Lee, Joon Ha
    • Progress in Medical Physics
    • /
    • v.28 no.4
    • /
    • pp.156-163
    • /
    • 2017
  • To verify the usefulness of a steam sterilizer equipped with an electronic Bowie-Dick test system, this study was carried out using two methods, utilizing both a steam sterilizer and an electronic Bowie-Dick tester. The first method is to confirm the error detection of the chemical Bowie-Dick test pack and the electronic Bowie-Dick tester in a malfunctioning sterilizer environment. For this purpose, the Bowie-Dick test program for the steam sterilizer was used to test three types of test packs commonly used in hospitals and the electronic Bowie-Dick tester by changing the set values of temperature, time, and vacuum frequency. The second is an experiment to check the sterilizer's normal operation with the electronic Bowie-Dick tester and the usefulness of grasping the cause of the malfunction. The results showed that the sterilization temperature was the same as that of the test pack at a temperature $1{\sim}6^{\circ}C$ lower than the reference temperature of $134^{\circ}C$. In the test with the sterilization exposure time as a variable, there was a normal discoloration at a time difference of 30~90 s. In the experiment using the number of vacuum cycles, the test was correct by performing the normal discoloration only at the normal condition of 3 times. The test results of 30 hospitals were 100 failure tests by a total of 291 Bowie-Dick tests. Of these, the failure factors related to an internal temperature that the chemical test packs could not detect were the greatest, and the four factors related to temperature, including the internal temperature, were found to be 71.18% of total malfunctions. In addition, the Bowie-Dick tester was provided within 30 min after the start of the Bowie-Dick test to confirm the performance of the sterilizer and the detailed cause. A steam sterilizer equipped with an electronic Bowie-Dick test system is used to manage individual sterilizers. In the current steam sterilizer with many temperature-related errors, it is possible to check the malfunction of the temperature difference that the test pack cannot detect, and the cause of error for the sterilizer is immediately detected after the test. The steam sterilizer equipped with the electronic Bowie-Dick test system assists with infection control with accurate sterilizer performance assurance.

A study on the design of an efficient hardware and software mixed-mode image processing system for detecting patient movement (환자움직임 감지를 위한 효율적인 하드웨어 및 소프트웨어 혼성 모드 영상처리시스템설계에 관한 연구)

  • Seungmin Jung;Euisung Jung;Myeonghwan Kim
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.29-37
    • /
    • 2024
  • In this paper, we propose an efficient image processing system to detect and track the movement of specific objects such as patients. The proposed system extracts the outline area of an object from a binarized difference image by applying a thinning algorithm that enables more precise detection compared to previous algorithms and is advantageous for mixed-mode design. The binarization and thinning steps, which require a lot of computation, are designed based on RTL (Register Transfer Level) and replaced with optimized hardware blocks through logic circuit synthesis. The designed binarization and thinning block was synthesized into a logic circuit using the standard 180n CMOS library and its operation was verified through simulation. To compare software-based performance, performance analysis of binary and thinning operations was also performed by applying sample images with 640 × 360 resolution in a 32-bit FPGA embedded system environment. As a result of verification, it was confirmed that the mixed-mode design can improve the processing speed by 93.8% in the binary and thinning stages compared to the previous software-only processing speed. The proposed mixed-mode system for object recognition is expected to be able to efficiently monitor patient movements even in an edge computing environment where artificial intelligence networks are not applied.

Development History and Direction of On-site Algae Collecting System with Flotation Technology (부상분리 기술을 이용한 현장형 조류수거시스템의 발전 과정 및 개발 방향)

  • Kim, Jong Ik;Han, Ihn Sup;Mei, Qi Wen;Cho, Chong Joo;Jung, Soon Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.4
    • /
    • pp.194-200
    • /
    • 2017
  • On-site Algae Collecting System (OACS) is one of urgent countermeasures to clean the raw water when the algae blooms severely. Rapid reaction capability, high efficiency and large capacity are required when applying OACS to large water areas. The total performance of OACS are always determined by unit process named Flotation, Trapping and Collection. The working efficiency and daily treatment quantity of OACS can be increased when it runs automatically. As the rapid development of OACS technology, in the first place, equipment are miniaturized and simple. And in the second place, automation process from Trapping to Collection are advanced. So, They produce results higher working efficiency, smaller residual sludge on treated water, system's advanced environmental friendly features and the increased amount of sludge by Collection process to achieve large capacity. Now OACS has overcome the algae multiplication rate to ensured the amount of removal algae. In another aspect, it is high economically feasible because of reducing operation cost against the large capacity.

A Study on Evaluation System of Track Support Stiffness for Concrete Tracks (콘크리트궤도의 궤도지지강성 평가시스템에 관한 연구)

  • Choi, Jung-Youl;Kim, Man-Hwa;Kim, Hyun-Soo;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.2
    • /
    • pp.535-541
    • /
    • 2020
  • A conventional elastic material replacement and performance evaluation are very complicated and time-consuming, and it is difficult to know when to replace the elastic material in advance. By comparing with the product limit and the functional limit, the necessity of elastic material replacement and the improvement of track support stiffness according to replacement can be immediately demonstrated based on experimental data. Using an evaluation system of track support stiffness, the performance evaluation data for elastic materials obtained through field tests using software for track support stiffness is integrated and managed on the administrator's computer. Therefore, the replacement plan is established and maintenance history is managed by identifying the replacement time and location of elastic materials. It is possible to evaluate the performance and condition of the elastic material at the various points during the working time of the track inspection and the track performance (track support stiffness) and durability of the elastic material (aging level, spring stiffness variation rate, etc.) at the operation condition. The elastic material could be replaced timely, and the deterioration of the elastic material can be continuously monitored.

Application of CFD Methods to Improve Performance of Denitrification Facility (탈질 설비의 성능 개선을 위한 CFD 기법 적용에 관한 연구)

  • Min-Kyu Kim;Hee-Taeg Chung
    • Clean Technology
    • /
    • v.29 no.4
    • /
    • pp.305-312
    • /
    • 2023
  • Due to the strengthening of environmental requirements, aging denitrification facilities need to improve their performance. The present study aims to suggest the possibility of improving performance using computational analysis techniques. This involved modifying both the geometric design and the operating conditions, including the flow path shape of the equipment such as the inlet guide vane and the curved diffusing part, and the flow control of the ammonia injection nozzle. The conditions presented in this study were compared with existing operating conditions in terms of the flow uniformity, the NH3/NO molar ratio of the mixed gas flowing into the catalyst layer, and the total pressure drop of the facility. The flow field applied in the computational analysis ranged from the outlet of the economizer in the combustion furnace to the inlet of the air preheater, the full domain of the denitrification facility. The performances were derived by solving the flow fields using ANSYS-Fluent and the injection amount of ammonia was adjusted for each nozzle using Design Xplorer. Compared to the denitrification performances of the equipment currently in operation, the conditions proposed in this study showed an improvement in the flow uniformity and NH3/NO composition ratio by 45.1% and 8.7%, respectively, but the total pressure drop increased by 1.24%.

Particulate Matter and CO2 Improvement Effects by Vegetation-based Bio-filters and the Indoor Comfort Index Analysis (식생기반 바이오필터의 미세먼지, 이산화탄소 개선효과와 실내쾌적지수 분석)

  • Kim, Tae-Han;Choi, Boo-Hun;Choi, Na-Hyun;Jang, Eun-Suk
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.4
    • /
    • pp.268-276
    • /
    • 2018
  • BACKGROUND: In the month of January 2018, fine dust alerts and warnings were issued 36 times for $PM_{10}$ and 81 times for PM2.5. Air quality is becoming a serious issue nation-wide. Although interest in air-purifying plants is growing due to the controversy over the risk of chemical substances of regular air-purifying solutions, industrial spread of the plants has been limited due to their efficiency in air-conditioning perspective. METHODS AND RESULTS: This study aims to propose a vegetation-based bio-filter system that can assure total indoor air volume for the efficient application of air-purifying plants. In order to evaluate the quantitative performance of the system, time-series analysis was conducted on air-conditioning performance, indoor air quality, and comfort index improvement effects in a lecture room-style laboratory with 16 persons present in the room. The system provided 4.24 ACH ventilation rate and reduced indoor temperature by $1.6^{\circ}C$ and black bulb temperature by $1.0^{\circ}C$. Relative humidity increased by 24.4% and deteriorated comfort index. However, this seemed to be offset by turbulent flow created from the operation of air blowers. While $PM_{10}$ was reduced by 39.5% to $22.11{\mu}g/m^3$, $CO_2$ increased up to 1,329ppm. It is interpreted that released $CO_2$ could not be processed because light compensation point was not reached. As for the indoor comfort index, PMV was reduced by 83.6 % and PPD was reduced by 47.0% on average, indicating that indoor space in a comfort range could be created by operating vegetation-based bio-filters. CONCLUSION: The study confirmed that the vegetation-based bio-filter system is effective in lowering indoor temperature and $PM_{10}$ and has positive effects on creating comfortable indoor space in terms of PMV and PPD.

Analyzing System of Fuel Filter Based on Temperature and Pressure Measurement for Diesel Cars (온도 및 압력 측정에 기반을 둔 디젤 차량의 연료필터 분석 시스템)

  • Jang, Young-Sung;Lee, Bo-Hee;Yoon, Dal-Hwan;Kim, Jin-Geol;Son, Byeong-Min
    • Journal of IKEEE
    • /
    • v.18 no.3
    • /
    • pp.383-391
    • /
    • 2014
  • In this paper, temperature, pressure and flow analysis system for testing a fuel filter of a diesel engine at the low-temperature environment in winter, is proposed. The light oil of diesel engine below a specific temperature is changed to the waxing materials like paraffin, and it prevents engine to start easily because of reducing fluidity. Thus, built-in block heater should be installed with fuel filter in order to solve this problem. And it is necessary to design evaluation system that can analyze the performance according to temperature, pressure and flow characteristics near fuel filter at a very low temperature. In this paper, we measured a physical quantity related to the performance of around the fuel filter using the proposed system, and analyzed their characteristics. Also the measured data is transferred to remote user by using a web server of embedded systems, and analyzed their conditions in remote place via web browser in order to know the operating status of fuel filter. We installed the proposed system in a small test chamber to verify the performance and took an experiment in normal temperature and very low temperature, and could obtain temperature, pressure and flow of near the fuel filter. As a result, the fuel flow could be improved during operation of the fuel heater.