• Title/Summary/Keyword: co-immunomodulatory

Search Result 74, Processing Time 0.026 seconds

Effects of Red-ginseng Extracts on the Activation of Dendritic Cells (고려홍삼의 수지상세포 활성화 효과)

  • Kim, Do-Soon;Park, Jueng-Eun;Seo, Kwon-Il;Ko, Sung-Ryong;Lee, Jong-Won;Do, Jae-Ho;Yee, Sung-Tae
    • Journal of Ginseng Research
    • /
    • v.30 no.3
    • /
    • pp.117-127
    • /
    • 2006
  • Ginseng is a medicinal herb widely used in Asian countries. Dendritic cells(DCs) play a pivotal role in the initiation of T cell-mediated immune responses, making them an attractive cellular adjuvant for use in cancer vaccines. In this study, we examined the effects of Red-ginseng(water extract, edible and fermented ethyl alcohol extract, crude saponin) on the DCs phenotypic and functional maturation. Immature DCs were cultured in the presence of GM-CSF and IL-4, and the generated immature DCs were stimulated by water extract, edible and fermented ethyl alcohol extract, crude saponin and LPS, respectively, for 24hours. The expression of surface co-stimulatory molecules, including MHC(major histocompatibility complex) class II, CD40, CD80 and CD86, was increased on DCs that were stimulated with crude saponin, but antigen-uptake capacity was decreased. The antigen-presenting capacity of Red-ginseng extracts-treated DCs as analyzed by allogeneic T cells proliferation and IL-2, $IFN-{\gamma}$ production was increased. Furthermore, $CD4^+$ and $CD8^+$ syngeneic T cell(OVA-specific) proliferation and $IFN-{\gamma}$ production was significantly increased. However, $CD4^+$ syngeneic T cell secreted higher levels of IL-2 in responding but not $CD8^+$ syngeneic T cell. These results indicate the immunomodulatory properties of Red-ginseng extracts, which might be therapeutically useful in the control of cancers and immunodeficient diseases through the up-regulation of DCs maturation.

IL-12 Regulates B7-H1 Expression in Ovarian Cancer-associated Macrophages by Effects on NF-κB Signalling

  • Xiong, Hai-Yu;Ma, Ting-Ting;Wu, Bi-Tao;Lin, Yan;Tu, Zhi-Guang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.14
    • /
    • pp.5767-5772
    • /
    • 2014
  • Background and Aim: B7-H1, a co-inhibitory molecule of the B7 family, is found aberrantly expressed in ovarian cancer cells and infiltrating macrophage/dendritic-like cells, and plays a critical role in immune evasion by ovarian cancer. IL-12, an inducer of Th1 cell development, exerts immunomodulatory effects on ovarian cancer. However, whether IL-12 regulates B7-H1 expression in human ovarian cancer associated-macrophages has not been clarified. Therefore, we investigated the effects of IL-12 on the expression of B7-H1 in ovarian cancer-associated macrophages and possible mechanisms. Methods: PMA induced THP-1-derived macrophages or human monocyte-derived macrophages were treated with recombinant IL-12 (rIL-12) or infected with adenovirus carrying human IL-12 gene (Ad-IL-12-GFP) for 24 h, then cocultured with the SKOV3 ovarian cancer cell line for another 24 h. Macrophages were collected for real-time PCR and Western blot to detect the expression of B7-H1, and activation of the NF-${\kappa}B$ signaling pathway. Moreover, supernatants were collected to assay for IL-12, IFN-${\gamma}$ and IL-10 by ELISA. In addition, monocyte-derived macrophages treated with IFN-${\gamma}$ were cocultured with SKOV3 and determined for the expression of B7-H1. Furthermore, the expression of B7-H1 in monocyte-derived macrophages was also evaluated after blocking NF-${\kappa}B$ signaling. Results: The expression of B7-H1 was significantly upregulated in monocyte-derived macrophages treated with rIL-12 or Ad-IL-12-GFP compared with the control groups (p<0.05), accompanied by a remarkable upregulation of IFN-${\gamma}$ (p<0.05), a marked downregulation of IL-10 (p<0.05) and activation of NF-${\kappa}B$ signaling. However, the upregulation of B7-H1 was inhibited by blocking the NF-${\kappa}B$ signaling pathway (p<0.05). Expression of B7-H1 was also increased (p<0.05) in monocyte-derived macrophages treated with IFN-${\gamma}$ and cocultured with SKOV3. By contrast, the expression of B7-H1 in THP-1-derived macrophages was significantly decreased when treated in the same way as monocyte-derived macrophages (p<0.05), and IL-10 was also significantly decreased but IFN-${\gamma}$ was almost absent. Conclusions: IL-12 upregulates the expression of B7-H1 in monocyte-derived macrophages, which is possible though inducing the secretion of IFN-${\gamma}$ and further activating the NF-${\kappa}B$ signal pathway. However, IL-12 downregulates the expression of B7-H1 in THP-1-derived macrophages, associated with a lack of IFN-${\gamma}$ and inhibition of expression of IL-10.

Ethanol Extracts of Mori Folium Inhibit Adipogenesis Through Activation of AMPK Signaling Pathway in 3T3-L1 Preadipocytes (3T3-L1 세포에서 상엽이 유발하는 AMPK signaling pathway를 통한 adipogenesis 억제에 관한 연구)

  • Ji, Seon Young;Jeon, Keong Yoon;Jeong, Jin Woo;Hong, Su Hyun;Huh, Man Kyu;Choi, Yung Hyun;Park, Cheol
    • Journal of Life Science
    • /
    • v.27 no.2
    • /
    • pp.155-163
    • /
    • 2017
  • Mori Folium, the leaf of Morus alba, is a traditional medicinal herb that shows various pharmacological activities such as antiinflammatory, antidiabetic, antimelanogenesis, antioxidant, antibacterial, antiallergic, and immunomodulatory activities. However, the mechanisms of their inhibitory effects on adipocyte differentiation and adipogenesis remain poorly understood. In the present study, we investigated the inhibition of adipocyte differentiation and adipogenesis by ethanol extracts of Mori Folium (EEMF) in 3T3-L1 preadipocytes. Treatment with EEMF suppressed the terminal differentiation of 3T3-L1 preadipocytes in a dose-dependent manner, as confirmed by a decrease in the lipid droplet number and lipid content through Oil Red O staining. EEMF significantly reduced the accumulation of cellular triglyceride, which is associated with a significant inhibition of pro-adipogenic transcription factors, including sterol regulatory element-binding protein-1c (SREBP-1c), peroxisome proliferator-activated receptor-${\gamma}$ ($PPAR{\gamma}$), and CCAAT/enhancer-binding proteins ${\alpha}$ ($C/EBP{\alpha}$) and ${\beta}$ ($C/EBP{\beta}$). In addition, EEMF potentially downregulated the expression of adipocyte-specific genes, including adipocyte fatty acid binding protein (aP2) and leptin. Furthermore, EEMF treatment effectively increased the phosphorylation of the AMP-activated protein kinase (AMPK) and acetyl CoA carboxylase (ACC); however, treatment with a potent inhibitor of AMPK, compound C, significantly restored the EEMF-induced inhibition of pro-adipogenic transcription factors and adipocyte-specific genes. These results together indicate that EEMF has preeminent effects on the inhibition of adipogenesis through the AMPK signaling pathway, and further studies will be needed to identify the active compounds in Mori Folium.

Anti-inflammatory Effect of Heat-Killed Enterococcus faecalis, EF-2001 (열처리 사균체 엔테로코커스 패칼리스 EF-2001의 항염증 효과)

  • Choi, Moon-Suk;Chang, Sang-Jin;Chae, Yuri;Lee, Myung-Hun;Kim, Wan-Joong;Iwasa, Masahiro;Han, Kwon-Il;Kim, Wan-Jae;Kim, Tack-Joong
    • Journal of Life Science
    • /
    • v.28 no.11
    • /
    • pp.1361-1368
    • /
    • 2018
  • Inflammation is the most common condition in the human body. Tissue damage triggers inflammation, together with vasodilation and increased blood flow at the inflamed site, resulting in edema. Inflammatory responses are also triggered by lipopolysaccharide (LPS), a Toll-like receptor Enterococcus faecalis, a gram-positive organism, has been reported to possess immunomodulatory and preventive activities; however, its use may present risks of sepsis and other systemic infections. Heat-killed Enterococcus faecalis (EF-2001) has been reported to induce antitumor activity, but its effects on inflammation are not known. In the present study, we investigated the effect of EF-2001 on LPS-induced macrophage inflammatory responses. EF-2001 treatment reduced nitric oxide (NO) production, indicating suppression of inflammatory reactions. EF-2001 showed no cytotoxicity in macrophages. Further investigation of the anti-inflammatory mechanism of EF-2001 indicated that EF-2001 reduced the LPS-induced expression of inducible nitric oxide synthase and cyclooxygenase-2. EF-2001 also reduced f the LPS induction of several inflammatory molecules involved in the nuclear factor-${\kappa}B$ ($NF-{\kappa}B$) and mitogen-activated protein kinase pathways, including ERK, JNK, and p38 phosphorylation, in a concentration-dependent manner. Additionally, EF-2001 inhibited Akt phosphorylation and increased the expression of the inhibitory ${\kappa}B$ ($I{\kappa}B$) protein, an inhibitor of $NF-{\kappa}B$. EF-2001 also inhibited the nuclear translocation of p65. These results suggest that EF-2001 has anti-inflammatory properties and may be useful for treating inflammatory diseases.