• Title/Summary/Keyword: co-fired cell

Search Result 14, Processing Time 0.027 seconds

Fabrication and Characteristics of Supported Type Planar Solid Oxide Fuel Cell By Co-firing Process (공소결법에 의해 제조된 지지체식 평판형 고체산화물 연료전지 성능 특성)

  • Song, Rak-Hyun
    • Korean Journal of Materials Research
    • /
    • v.13 no.3
    • /
    • pp.160-168
    • /
    • 2003
  • The co-firing processes for the supported type planar solid oxide fuel cell were investigated. A flat cell of $7.7${\times}$10.8\textrm{cm}^2$ was fabricated successfully by the co-firing process, in which green films were co-sintered in the forms of two layers of anode/electrolyte or of three layers of anode/electrolyte/cathode with gas distributor. A co-fired cell of two layers yielded a power of 200 ㎽/$\textrm{cm}^2$ at 608 ㎷. Its performance loss was mainly due to iR drop in the anodic gas distributor, which was attributed to poor contact between anodic gas distributor and current collector. The performance in the co-fired cell of three layers was much lower than that of two layers, which resulted from the large iR drop and activation overvoltage at the cathodic side. In the co-fired cell of two layers, the impedance analysis indicated that the performance decay during cell operation is due to both anode overvoltage and iR drop at anode side. Also the electrode reaction of the co-fired two layers' cell is considered to be controlled by activation overvoltage within the low current of 50 ㎃.

Fabrication of Anode-Supported SOFC Single Cells via Tape-Casting of Thin Tapes and Co-Firing (박막 테이프캐스팅과 동시소성에 의한 연료극 지지형 SOFC 단전지 제조)

  • Moon, Hwan;Kim, Sun-Dong;Hyun, Sang-Hoon;Kim, Ho-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.12 s.295
    • /
    • pp.788-797
    • /
    • 2006
  • An anode-supported SOFC single cell having $5{\mu}m$ thin electrolyte was fabricated cost-effectively by tape casting, laminating, and co-filing of anode (NiO-YSZ), cathode (LSM-YSZ), and electrolyte (YSZ) components. The optimal slurry compositions of the green tapes for SOFC components were determined by an analysis of the mean diameter, the slurry viscosity, the tensile strength/strain of the green tapes, and their green microstructures. The single cells with a dense electrolyte and porous electrodes could be co-fired successfully at $1325\sim1350^{\circ}C$ by controlling the contents of pore former and the ratio of coarse YSZ and fine YSZ in the anode and the cathode. The single cell co-fired at $1350^{\circ}C$ showed $100.2mWcm^{-2}$ of maximum power density at $800^{\circ}C$ but it was impossible to apply it to operate at low temperature because of low performance and high ASR, which were attributed to formation of the secondary phases in the cathode and the interface between the electrolyte and the cathode.

Fabrication and Chacterization of Planar Solid Oxide Fuel Cell (평판형 고체산화물 연료전지 제조 및 특성 연구)

  • Song, Rak-Hyun;Lee, Byun-Rok;Kim, Chang-Soo;Shin, Dong-Ryul
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1700-1702
    • /
    • 1996
  • Solid oxide fuel cell(SOFC) is an electrochemical energy device which converts the free energy of fuel gas directly to electric energy. SOFC has several diratinct advantages over other types of fuel cells: no use of noble metals, no requirement of a reformer, no problem of liquid electrolyte management, and no problem of corrosion by liquid electrolyte. In this study, we have investigated the cell components and the single cell of the planar SOFC fabricated by composite plate process, in which green films of electrolyte, anode and cathode were co-fired. The planar SOFCs were tested and the cell performance characteristics wag evaluated by using electrochemical methods.

  • PDF

Bi-electrolyte Carbon Dioxide Gas Sensor Based on Paste Sodium-Beta Alumina and Yttria-stabilized Zirconia

  • Han, Hyeuk Jin;Park, Chong Ook
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.170-172
    • /
    • 2014
  • $CO_2$ sensor was used only one solid electrolyte in many cases. To improve the sensing characteristics of $CO_2$ sensors, solid electrolyte $CO_2$ sensor has been developed by bi-electrolyte type sensor using Na-Beta-alumina and YSZ. However, in many further studies, bi-electrolyte type sensor was made by pellet pressed by press machine and additional treatment for formation of interface. In the aspect of mass production, using thick film and additional treatment is not suitable. In this study, $CO_2$ sensor was fabricated by bi-electrolyte structure which was made by an NBA paste layer deposited on YSZ pellet and fired at $1650^{\circ}C$ for 2 hour. The formation of stable interface between YSZ and NBA were confirmed by SEM image. When the type IV electrochemical cell arrangement represented by $CO_2,O_2,Pt{\mid}Li_2CO_3-CaCO_3{\parallel}NBA{\parallel}YSZ{\mid}O_2,Pt$ is used to measure the $CO_2$ concentration in air. This sensor EMF should depend only on the concentration of $CO_2$ by logarithmic. Also, sensor shows $P_{CO_2}$ and EMF relationship like nerstian reaction at a temperature of $450^{\circ}C$.

Anode-supported Solid Oxide Fuel Cells Prepared by Spin-coating (Spin-coating 공정에 의해 제조된 음극 지지형 고체산화물 연료전지)

  • Yu, Ji-Haeng;Lee, Hee-Lak;Woo, Sang-Kuk
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.12
    • /
    • pp.733-739
    • /
    • 2007
  • NiO-YSZ anode-supported single cell was prepared by spin-coating YSZ and LSM slurries as electrolyte and cathode, respectively. Dense YSZ electrolyte film was successfully prepared on the porous NiO-YSZ anode substrate by tuning pre-sintering temperature of NiO-YSZ and co-firing temperature. The thickness of YSZ film was controlled by the solid content of slurry and coating cycles. The experimental conditions affecting on the thickness of YSZ film was discussed. Single cells with the active electrode area ${\sim}0.8\;cm^2$ were prepared by spin-coating the cathode layers of LSM-YSZ mixture and LSM consequently as well. The effects of the pre-sintering temperature and thus the microstructure of NiO-YSZ substrate on the current-voltage characteristics of co-fired cell were investigated.

Fabrication and Characteristics of Anode-supported Tubular Solid Oxide Fuel Cell (연료극 지지체식 원통형 고체산화물 연료전지의 제조 및 특성)

  • Song, Keun-Sik;Song, Rak-Hyun;Ihm, Young-Eon
    • Korean Journal of Materials Research
    • /
    • v.12 no.9
    • /
    • pp.691-695
    • /
    • 2002
  • A low temperature anode-supported tubular solid oxide fuel cell was developed. The anode-supported tube was fabricated using extrusion process. Then the electrolyte layer and the cathode layer were coated onto the anode tube by slurry dipping process, subsequently. The anode tube and electrolyte were co-fired at $140^{\circ}C$, and the cathode was sintered at $1200^{\circ}C$. The thickness and gas permeability of the electrolyte depended on the number of coating and the slurry concentration. Anode-supported tube was satisfied with SOFC requirements, related to electrical conductivity, pore structure, and gas diffusion limitations. At operating temperature of $800^{\circ}C$, open circuit voltage of the cell with gastight and dense electrolyte layer was 1.1 V and the cell showed a good performance of 450 mW/$\textrm{cm}^2$.

Efficiency Improvement in Screen-printed Crystalline Silicon Solar Cell with Light Induced Plating (광유도도금을 이용한 스크린 프린팅 결정질 실리콘 태양전지의 효율 향상)

  • Jeong, Myeong Sang;Kang, Min Gu;Chang, Hyo Sik;Song, Hee-Eun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.3
    • /
    • pp.246-251
    • /
    • 2013
  • Screen printing is commonly used to form the front/back electrodes in silicon solar cell. But it has caused high resistance and low aspect ratio, resulting in decreased conversion efficiency in solar cell. Recently the plating method has been combined with screen-printed c-Si solar cell to reduce the resistance and improve the aspect ratio. In this paper, we investigated the effect of light induced silver plating with screen-printed c-Si solar cells and compared their electrical properties. All wafers were textured, doped, and coated with anti-reflection layer. The metallization process was carried out with screen-printing, followed by co-fired. Then we performed light induced Ag plating by changing the plating time in the range of 20 sec~5min with/without external light. For comparison, we measured the light I-V characteristics and electrode width by optical microscope. During plating, silver ions fill the porous structure established in rapid silver particle sintering during co-firing step, which results in resistance decrease and efficiency improvement. The plating rate was increased in presence of light lamp, resulting in widening the electrode with and reducing the short-circuit current by shadowing loss. With the optimized plating condition, the conversion efficiency of solar cells was increased by 0.4% due to decreased series resistance. Finally we obtained the short-circuit current of 8.66 A, open-circuit voltage of 0.632 V, fill factor of 78.2%, and efficiency of 17.8% on a silicon solar cell.

Performance Comparison of Molten Carbonate Fuel Cell Hybrid Systems Minimizing Carbon Dioxide Emissions (이산화탄소 배출을 최소화하는 용융탄산염 연료전지 하이브리드 시스템들의 성능 비교)

  • AHN, JI HO;YOON, SUK YOUNG;KIM, TONG SEOP
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.1
    • /
    • pp.30-39
    • /
    • 2017
  • Interests in fuel cell based power generation systems are on the steady rise owing to various advantages such as high efficiency, ultra low emission, and potential to achieve a very high efficiency by a synergistic combination with conventional heat engines. In this study, the performance of a hybrid system which combined a molten carbonate fuel cell (MCFC) and an indirectly fired micro gas turbine adopting carbon dioxide capture technologies was predicted. Commercialized 2.5 MW class MCFC system was used as the based system so that the result of this study could reflect practicality. Three types of ambient pressure hybrid systems were devised: one adopting post-combustion capture and two adopting oxy-combustion capture. One of the oxy-combustion based system is configured as a semi-closed type, while the other is an open cycle type. The post-combustion based system exhibited higher net power output and efficiency than the oxy-combustion based systems. However, the semi-closed system using oxy-combustion has the advantage of capturing almost all carbon dioxide.

Direct-Write Fabrication of Solid Oxide Fuel Cell by Robo-Dispensing (로보 디스펜싱을 이용하여 직접묘화방식으로 제조된 고출력 소형 고체산화물 연료전지)

  • Kim, Yong-Bum;Moon, Jooho;Kim, Joosun;Lee, Jong-Ho;Lee, Hae-Weon
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.6 s.277
    • /
    • pp.425-431
    • /
    • 2005
  • Line Shaped Solid Oxide Fuel Cell (SOFC) with multilayered structure has been fabricated via direct-writing process. The cell is electrolyte of Ni-YSZ cermet anode, YSZ electrolyte and LSM cathode. They were processed into pastes for the direct writing process. Syringe filled with each electrode and electrolyte paste was loaded into the computer-controlled robe-dispensing machine and the paste was dispensed through cylindrical nozzle of 0.21 mm in diameter under the air pressure of 0.1 tow onto a moving plate with 1.22 mm/s. First of all, the anode paste was dispensed on the PSZ porous substrate, and then the electrolyte paste was dispensed. The anode/electrolyte and the PSZ substrate were co-fired at $1350^{\circ}C$ in air atmosphere for 3 h. The cathode layer was similarly dispensed and sintered at $1200^{\circ}C$ for 1 h. All the electrode/electrolyte lines were visually aligned during the direct writing process. The effective reaction area of fabricated SOFC was $0.03 cm^2$, and the thickness of anode, electrolyte and cathode was 20 $\mu$m, 15 $\mu$m, and 10 $\mu$m, respectively. The single line-shaped SOFC fabricated by direct-writing process exhibited OCV of 0.95 V and maximum power density of $0.35W/cm^2$ at $810^{\circ}C$.

The effect of repeated porcelain firings on corrosion resistance of different dental alloys

  • Tuncdemir, Ali Riza;Karahan, Ismail;Polat, Serdar;Malkoc, Meral Arslan;Dalkiz, Mehmet
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.1
    • /
    • pp.44-50
    • /
    • 2013
  • PURPOSE. The aim of this study was to evaluate the effects of repeated porcelain firing process on the corrosion rates of the dental alloys. MATERIALS AND METHODS. Cr-Co, Cr-Ni and Pd-Ag alloys were used for this study. Each metal supported porcelain consisted of 30 specimens of 10 for 7, 9 and 11 firing each. Disc-shaped specimens 10 mm diameter and 3 mm thickness were formed by melting alloys with a propane-oxygen flame and casted with a centrifuge casting machine and then with the porcelain veneer fired onto the metal alloys. Corrosion tests were performed in quintuplicate for each alloy (after repeated porcelain firing) in Fusayama artificial saliva solution (pH = 5) in a low thermal-expansion borosilicate glass cell. Tamhane and Sheffe test was used to compare corrosion differences in the results after repeated firings and among 7, 9 and 11 firing for each alloy. The probability level for statistical significance was set at ${\alpha}$=0.05. RESULTS. The corrosion resistance was higher (30 mV), in case of 7 times firing (Commercial). On the other hand, it was lower in case of 11 times firing (5 mV) (P<.05). Conclusion. Repeated firings decreased corrosion resistance of Pd-Ag, Cr-Co and Cr-Ni alloys. The Pd-Ag alloy exhibited little corrosion in in vitro tests. The Cr-Ni alloy exhibited higher corrosion resistance than Cr-Co alloys in in vitro tests.