• Title/Summary/Keyword: co-evolution

Search Result 682, Processing Time 0.027 seconds

Impact of Fermentation Rate Changes on Potential Hydrogen Sulfide Concentrations in Wine

  • Butzke, C.E.;Park, Seung-Kook
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.5
    • /
    • pp.519-524
    • /
    • 2011
  • The correlation between alcoholic fermentation rate, measured as carbon dioxide ($CO_2$) evolution, and the rate of hydrogen sulfide ($H_2S$) formation during wine production was investigated. Both rates and the resulting concentration peaks in fermentor headspace $H_2S$ were directly impacted by yeast assimilable nitrogenous compounds in the grape juice. A series of model fermentations was conducted in temperature-controlled and stirred fermentors using a complex model juice with defined concentrations of ammonium ions and/or amino acids. The fermentation rate was measured indirectly by noting the weight loss of the fermentor; $H_2S$ was quantitatively trapped in realtime using a pre-calibrated $H_2S$ detection tube which was inserted into a fermentor gas relief port. Evolution rates for $CO_2$ and $H_2S$ as well as the relative ratios between them were calculated. These fermentations confirmed that total sulfide formation was strongly yeast strain-dependent, and high concentrations of yeast assimilable nitrogen did not necessarily protect against elevated $H_2S$ formation. High initial concentrations of ammonium ions via addition of diammonium phosphate (DAP) caused a higher evolution of $H_2S$ when compared with a non-supplemented but nondeficient juice. It was observed that the excess availability of a certain yeast assimilable amino acid, arginine, could result in a more sustained $CO_2$ production rate throughout the wine fermentation. The contribution of yeast assimilable amino acids from conventional commercial yeast foods to lowering of the $H_2S$ formation was marginal.

Effects of simulated acid rain on microbial activities and litter decomposition

  • Lim, Sung-Min;Cha, Sang-Seob;Shim, Jae-Kuk
    • Journal of Ecology and Environment
    • /
    • v.34 no.4
    • /
    • pp.401-410
    • /
    • 2011
  • We assayed the effects of simulated acid rain on the mass loss, $CO_2$ evolution, dehydrogenase activity, and microbial biomass-C of decomposing Sorbus alnifolia leaf litter at the microcosm. The dilute sulfuric acid solution composed the simulated acid rain, and the microcosm decomposition experiment was performed at 23$^{\circ}C$ and 40% humidity. During the early decomposition stage, decomposition rate of S. alnifolia leaf litter, and microbial biomass, $CO_2$ evolution and dehydrogenase activity were inhibited at a lower pH; however, during the late decomposition stage, these characteristics were not affected by pH level. The fungal component of the microbial community was conspicuous at lower pH levels and at the late decomposition stage. Conversely, the bacterial community was most evident during the initial decomposition phase and was especially dominant at higher pH levels. These changes in microbial community structure resulting from changes in microcosm acidity suggest that pH is an important aspect in the maintenance of the decomposition process. Litter decomposition exhibited a positive, linear relationship with both microbial respiration and microbial biomass. Fungal biomass exhibited a significant, positive relationship with $CO_2$ evolution from the decaying litter. Acid rain had a significant effect on microbial biomass and microbial community structure according to acid tolerance of each microbial species. Fungal biomass and decomposition activities were not only more important at a low pH than at a high pH but also fungal activity, such as $CO_2$ evolution, was closely related with litter decomposition rate.

High-Efficiency Light-Weight Motor Design Technique for Electric Vehicle Using Evolution Strategy ((1+1) Evolution Strategy를 이용한 유도전동기의 최적 설계)

  • Kim, M.K.;Lee, C.G.;Park, J.T.;Lee, H.B.;Jung, H.K.;Hahn, S.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.9-11
    • /
    • 1995
  • In this paper, tile squirrel case induction motors required multi-objective function are designed. As the objective function of the optimization program, we select the linear combination of loss and mass of motors by using weighting factors. Optimization process is performed by using the evolution strategy (ES). ES is the algorithm that can find the global minimum. To verify validity of the proposed method, a sample design is tried.

  • PDF

Optimal Allocation Method of Hybrid Active Power Filters in Active Distribution Networks Based on Differential Evolution Algorithm

  • Chen, Yougen;Chen, Weiwei;Yang, Renli;Li, Zhiyong
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1289-1302
    • /
    • 2019
  • In this paper, an optimal allocation method of a hybrid active power filter in an active distribution network is designed based on the differential evolution algorithm to resolve the harmonic generation problem when a distributed generation system is connected to the grid. A distributed generation system model in the calculation of power flow is established. An improved back/forward sweep algorithm and a decoupling algorithm are proposed for fundamental power flow and harmonic power flow. On this basis, a multi-objective optimization allocation model of the location and capacity of a hybrid filter in an active distribution network is built, and an optimal allocation scheme of the hybrid active power filter based on the differential evolution algorithm is proposed. To verify the effect of the harmonic suppression of the designed scheme, simulation analysis in an IEEE-33 nodes model and an experimental analysis on a test platform of a microgrid are adopted.

Co-evolution of Fuzzy Controller for the Mobile Robot Control

  • Byun, Kwang-Sub;Park, Chang-Hyun;Sim, Kwee-Bo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.82-85
    • /
    • 2003
  • In this paper, in order to deduce the deep structure of a set of fuzzy rules from the surface structure, we use co-evolutionary algorithm based on modified Nash GA. This algorithm coevolves membership functions in antecedents and parameters in consequents of fuzzy rules. We demonstrate this co-evolutionary algorithm and apply to the mobile robot control. From the result of simulation, we compare modified Nash GA with the other co-evolution algorithms and verify the efficacy of this algorithm through application to fuzzy systems.

  • PDF

Evaluation of Continuously and Intermittently Aerated Hog Manure Compost Stability in a Pilot-scale Bin Composting System (파일럿 규모 빈 퇴비화 시스템에서 연속 및 간헐 통기 돈분 퇴비의 안정도 평가)

  • Hong, Ji-Hyung
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.5
    • /
    • pp.100-108
    • /
    • 1998
  • Compost stability represents the state of microbiological activity and measurements of respiration either through $CO_2$ evolution or $O_2$ uptake should provide the best indication of this state. Hog manure amended with sawdust was composted in a pilot-scale reactor vessels using continuous and intermittent aeration for 3 weeks. In this study we evaluated the $CO_2$ respiration rate effect of aeration method on the reduction of $CO_2$ evolution, and investigated the stability of fresh and finished compost for plant growth. The intermittently aerated composting is a practical proposition for a very stable compost making. The $CO_2$ respiration rate in the fresh and finished compost during intermittently aerated composting was maintained from 0.3 to 1.4 and was good for use in horticulture, while the continuously aerated composting was 7 to 23 and needed more time for compost curing.

  • PDF

Revisited Meaning of Gated Community as a Tieboutian Voter: Evidence from Seoul of Private Governance and Local Public Goods

  • Woo, Yoon Seuk
    • Land and Housing Review
    • /
    • v.11 no.1
    • /
    • pp.39-48
    • /
    • 2020
  • Main research question of this study is about whether gated community (GC) as private urban governance gets along with local public goods by locating near to them. We examine this question through testing the Tiebout hypothesis from case study of Seoul, capital city of South Korea, in which GCs are so common to test the assumption empirically. For this, we examine the meaning of GC in 3 Es viewpoints; conceptualize the framework of Tieboutian co-evolution of GC and local public goods by hedonic price modeling. As a result, possibilities are found that GCs are to be seen from different point of view, viz. co-evolutionary mechanism between private and public governance; GCs effectively capture and represent the demand of residents for local public goods through voting by their collective locational choice. It allows us different kind of approach to investigate APTs as a co-evolutionary form of private and public urban order rather than seeing them only as a tool of speculative investment, particularly in rapidly urbanizing countries like Korea.

Ripple Effects of Electronic Games and Evolution of Electronic Game Platforms

  • Eun, Kwang-Ha
    • International Journal of Contents
    • /
    • v.6 no.1
    • /
    • pp.20-25
    • /
    • 2010
  • This paper discusses an academic study on electronic games and their incredibly vast and rapid growth over the years. It specifically addresses the evolution of electronic games from the 1960s to today, the ripple effects of electronic games, and the development of electronic game platforms. In terms of scope, the study first describes the ripple effects of the emergence of electronic games in chronological order and from the "immersion" and "convergence" perspectives, and then explores the evolution of electronic game platforms such as arcade machines, video consoles, personal computers, and mobile game devices.

Close Relationship Between SARS-Coronavirus and Group 2 Coronavirus

  • Kim, Ok-Ju;Lee, Dong-Hun;Lee, Chan-Hee
    • Journal of Microbiology
    • /
    • v.44 no.1
    • /
    • pp.83-91
    • /
    • 2006
  • The sudden appearance and potential lethality of severe acute respiratory syndrome (SARS)-associated coronavirus (SARS-CoV) in humans has resulted in a focusing of new attention on the determination of both its origins and evolution. The relationship existing between SARS-CoV and other groups of coronaviruses was determined via analyses of phylogenetic trees and comparative genomic analyses of the coronavirus genes: polymerase (Orflab), spike (S), envelope (E), membrane (M) and nucleocapsid (N). Although the coronaviruses are traditionally classed into 3 groups, with SARS-CoV forming a $4^{th}$ group, the phylogenetic position and origins of SARS-CoV remain a matter of some controversy. Thus, we conducted extensive phylogeneitc analyses of the genes common to all coronavirus groups, using the Neighbor-joining, Maximum-likelihood, and Bayesian methods. Our data evidenced largely identical topology for all of the obtained phylogenetic trees, thus supporting the hypothesis that the relationship existing between SARS-CoV and group 2 coronavirus is a monophyletic one. Additional comparative genomic studies, including sequence similarity and protein secondary structure analyses, suggested that SARS-Co V may bear a closer relationship with group 2 than with the other coronavirus groups. Although our data strongly suggest that group 2 coronaviruses are most closely related with SARS-CoV, further and more detailed analyses may provide us with an increased amount of information regarding the origins and evolution of the coronaviruses, most notably SARS-CoV.