• Title/Summary/Keyword: co-author networks

Search Result 32, Processing Time 0.02 seconds

Comparative Analysis on the Relationships between the Centralities in Co-authorship Networks and Research Performance Considering the Number of Co-authors (공저자 수를 고려한 공저 네트워크 중심성과 연구성과의 연관성 분석)

  • Lee, Jae Yun
    • Journal of the Korean Society for information Management
    • /
    • v.33 no.4
    • /
    • pp.175-199
    • /
    • 2016
  • We analyzed the relationships between the co-authorship network centralities and the research performance indicators with the authors and the number of citations of the papers published for 10 years in Korean library and information science journals. In particular, the research performance indicators were calculated with normal counting and with fractional counting also. As a result of correlation analysis between the variables by setting the different ranges of the author groups to be analyzed according to the number of articles, it was possible to explain the inconsistent results of the previous studies on the correlations between the researchers' citation indicators and their co-authorship network centralities. Overall, the degree of co-authorship activities measured by collaboration coefficient showed no or negatively correlated with research performance. There were statistically significant positive correlations between the centralities and the research performance indicators, but the correlation was not significant in the analysis of the top 30 authors by number of articles.

Spatial Features and Implications of Subcontracting Networks by a Large Firm: The Case of the Display Division of LG Electronics in Kumi, Korea (대기업 하청거래 네트워크의 공간적 특성 및 함의: LG전자 디스플레이 사업본부를 사례로)

  • 이철우
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.4 no.1
    • /
    • pp.19-35
    • /
    • 2001
  • This paper is concerned with the relationships between large firms with global reaches in their markets and subcontracting firms, mostly small and medium-sized firms. It then attempts to focus in more detail on the dynamic relational dimensions between the two. In doing so, we draw upon the secondary data and the results of interviewing survey with some senior managers. The empirical study shows that the localisation of subcontracting networks have been increasingly reinforced thanks to the increasing tendency of vertical disintegration by LC. However, it is identified that there is a tendency that local subcontractors are specialised in producing relatively low value-added and low technology-intensive electronic parts/components. Based on these results, the author suggests the implications of regional economic development in the context of innovation and learning.

  • PDF

Analysis of the impact of mathematics education research using explainable AI (설명가능한 인공지능을 활용한 수학교육 연구의 영향력 분석)

  • Oh, Se Jun
    • The Mathematical Education
    • /
    • v.62 no.3
    • /
    • pp.435-455
    • /
    • 2023
  • This study primarily focused on the development of an Explainable Artificial Intelligence (XAI) model to discern and analyze papers with significant impact in the field of mathematics education. To achieve this, meta-information from 29 domestic and international mathematics education journals was utilized to construct a comprehensive academic research network in mathematics education. This academic network was built by integrating five sub-networks: 'paper and its citation network', 'paper and author network', 'paper and journal network', 'co-authorship network', and 'author and affiliation network'. The Random Forest machine learning model was employed to evaluate the impact of individual papers within the mathematics education research network. The SHAP, an XAI model, was used to analyze the reasons behind the AI's assessment of impactful papers. Key features identified for determining impactful papers in the field of mathematics education through the XAI included 'paper network PageRank', 'changes in citations per paper', 'total citations', 'changes in the author's h-index', and 'citations per paper of the journal'. It became evident that papers, authors, and journals play significant roles when evaluating individual papers. When analyzing and comparing domestic and international mathematics education research, variations in these discernment patterns were observed. Notably, the significance of 'co-authorship network PageRank' was emphasized in domestic mathematics education research. The XAI model proposed in this study serves as a tool for determining the impact of papers using AI, providing researchers with strategic direction when writing papers. For instance, expanding the paper network, presenting at academic conferences, and activating the author network through co-authorship were identified as major elements enhancing the impact of a paper. Based on these findings, researchers can have a clear understanding of how their work is perceived and evaluated in academia and identify the key factors influencing these evaluations. This study offers a novel approach to evaluating the impact of mathematics education papers using an explainable AI model, traditionally a process that consumed significant time and resources. This approach not only presents a new paradigm that can be applied to evaluations in various academic fields beyond mathematics education but also is expected to substantially enhance the efficiency and effectiveness of research activities.

An Investigation on Scientific Data for Data Journal and Data Paper (Scientific Data 학술지 분석을 통한 데이터 논문 현황에 관한 연구)

  • Chung, EunKyung
    • Journal of the Korean Society for information Management
    • /
    • v.36 no.1
    • /
    • pp.117-135
    • /
    • 2019
  • Data journals and data papers have grown and considered an important scholarly practice in the paradigm of open science in the context of data sharing and data reuse. This study investigates a total of 713 data papers published in Scientific Data in terms of author, citation, and subject areas. The findings of the study show that the subject areas of core authors are found as the areas of Biotechnology and Physics. An average number of co-authors is 12 and the patterns of co-authorship are recognized as several closed sub-networks. In terms of citation status, the subject areas of cited publications are highly similar to the areas of data paper authors. However, the citation analysis indicates that there are considerable citations on the journals specialized on methodology. The network with authors' keywords identifies more detailed areas such as marine ecology, cancer, genome, database, and temperature. This result indicates that biology oriented-subjects are primary areas in the journal although Scientific Data is categorized in multidisciplinary science in Web of Science database.

A User Anonymous Mutual Authentication Protocol

  • Kumari, Saru;Li, Xiong;Wu, Fan;Das, Ashok Kumar;Odelu, Vanga;Khan, Muhammad Khurram
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4508-4528
    • /
    • 2016
  • Widespread use of wireless networks has drawn attention to ascertain confidential communication and proper authentication of an entity before granting access to services over insecure channels. Recently, Truong et al. proposed a modified dynamic ID-based authentication scheme which they claimed to resist smart-card-theft attack. Nevertheless, we find that their scheme is prone to smart-card-theft attack contrary to the author's claim. Besides, anyone can impersonate the user as well as service provider server and can breach the confidentiality of communication by merely eavesdropping the login request and server's reply message from the network. We also notice that the scheme does not impart user anonymity and forward secrecy. Therefore, we present another authentication scheme keeping apart the threats encountered in the design of Truong et al.'s scheme. We also prove the security of the proposed scheme with the help of widespread BAN (Burrows, Abadi and Needham) Logic.

Research Publishing by Library and Information Science Scholars in Pakistan: A Bibliometric Analysis

  • Ali, Muhammad Yousuf;Richardson, Joanna
    • Journal of Information Science Theory and Practice
    • /
    • v.4 no.1
    • /
    • pp.6-20
    • /
    • 2016
  • Scholarly communication plays a significant role in the development and dissemination of research outputs in library and information science (LIS). This study presents findings from a survey which examines the key attributes that characterize the publishing by Pakistani LIS scholars, i.e. academics and professionals, in national journals. A pilot-tested, electronic questionnaire was used to collect the data from the target population. 104 respondents (or 69.3% of target) provided feedback on areas such as number of articles published, number of citations, and the nature of any collaboration with other authors. The findings of this survey revealed that, among the various designated regions of Pakistan, the Punjab region was the most highly represented. In articles published in national journals, there was a clear preference among all respondents to collaborate with at least one other author. The citation metrics for LIS articles in national journals were relatively low (30.22%), which aligns with Scimago’s Journal and Country Rankings. The uptake of social scholarly networks mirrors international trends. Respondents were asked to score factors which could impact negatively on their ability to undertake research and/or publish the results. The study recommends that concerned stakeholders work together, as appropriate, to address concerns. In addition, it recommends that further research be undertaken to define patterns of Pakistani co-authorship in the social sciences.

Knowledge Structure of the Korean Journal of Occupational Health Nursing through Network Analysis (네트워크분석을 통한 직업건강간호학회지 논문의 지식구조 분석)

  • Kwon, Sun Young;Park, Eun Jung
    • Korean Journal of Occupational Health Nursing
    • /
    • v.24 no.2
    • /
    • pp.76-85
    • /
    • 2015
  • Purpose: The purpose of this study was to identify knowledge structure of the Korean Journal of Occupational Health Nursing from 1991 to 2014. Methods: 400 articles between 1991 and 2014 were collected. 1,369 keywords as noun phrases were extracted from articles and standardized for analysis. Co-occurrence matrix was generated via a cosine similarity measure, then the network was analyzed and visualized using PFNet. Also NodeXL was applied to visualize intellectual interchanges among keywords. Results: According to the results of the content analysis and the cluster analysis of author keywords from the Korean Journal of Occupational Health Nursing articles, 7 most important research topics of the journal were 'Workers & Work-related Health Problem', 'Recognition & Preventive Health Behaviors', 'Health Promotion & Quality of Life', 'Occupational Health Nursing & Management', 'Clinical Nursing Environment', 'Caregivers and Social Support', and 'Job Satisfaction, Stress & Performance'. Newly emerging topics for 4-year period units were observed as research trends. Conclusion: Through this study, the knowledge structure of the Korean Journal of Occupational Health Nursing was identified. The network analysis of this study will be useful for identifying the knowledge structure as well as finding general view and current research trends. Furthermore, The results of this study could be utilized to seek the research direction in the Korean Journal of Occupational Health Nursing.

Bibliometric analysis of source memory in human episodic memory research (계량서지학 방법론을 활용한 출처기억 연구분석: 인간 일화기억 연구를 중심으로)

  • Bak, Yunjin;Yu, Sumin;Nah, Yoonjin;Han, Sanghoon
    • Korean Journal of Cognitive Science
    • /
    • v.33 no.1
    • /
    • pp.23-50
    • /
    • 2022
  • Source memory is a cognitive process that combines the representation of the origin of the episodic experience with an item. By studying this daily process, researchers have made fundamental discoveries that make up the foundation of brain and behavior research, such as executive function and binding. In this paper, we review and conduct a bibliometric analysis on source memory papers published from 1989 to 2020. This review is based on keyword co-occurrence networks and author citation networks, providing an in-depth overview of the development of source memory research and future directions. This bibliometric analysis discovers a change in the research trends: while research prior to 2010 focused on individuality of source memory as a cognitive function, more recent papers focus more on the implication of source memory as it pertains to connectivity between disparate brain regions and to social neuroscience. Keyword network analysis shows that aging and executive function are continued topics of interest, although frameworks in which they are viewed have shifted to include developmental psychology and meta memory. The use of theories and models provided by source memory research seem essential for the future development of cognitive enhancement tools within and outside of the field of Psychology.

Analyzing Research Trends of Domestic Artificial Intelligence Research Using Network Analysis and Dynamic Topic Modelling (네트워크 분석과 동적 토픽모델링을 활용한 국내 인공지능 분야 연구동향 분석)

  • Jung, Woojin;Oh, Chanhee;Zhu, Yongjun
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.55 no.4
    • /
    • pp.141-157
    • /
    • 2021
  • In this study, we aimed to understand research trends of domestic artificial intelligence research. To achieve the goal, we applied network analysis and dynamic topic modeling to domestic research papers on artificial intelligence. Among the papers that have been indexed in KCI (Korean Journal of Citation Index) by 2020, metadata and abstracts of 2,552 papers where the titles or indexed keywords include 'artificial intelligence' both in Korean and English were collected. Keyword, affiliation, subject field, and abstract were extracted and preprocessed for further analyses. We identified main keywords in the field by analyzing keyword co-occurrence networks as well as the degree and characteristics of research collaboration between domestic and foreign institutions and between industry and university by analyzing institutional collaboration networks. Dynamic topic modeling was performed on 1845 abstracts written in Korean, and 13 topics were obtained from the labeling process. This study broadens the understanding of domestic artificial intelligence research by identifying research trends through dynamic topic modeling from abstracts as well as the degree and characteristics of research collaboration through institutional collaboration networks from author affiliation information. In addition, the results of this study can be used by governmental institutions for making policies in accordance with artificial intelligence era.

Using Text Mining for the Analysis of Research Trends Related to Laws Under the Ministry of Oceans and Fisheries (텍스트 마이닝을 활용한 해양수산부 법률 관련 연구동향 분석연구)

  • Hwang, Kyu Won;Lee, Moon Suk;Yun, So Ra
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.549-566
    • /
    • 2022
  • Recently, artificial intelligence (AI) technology has progressed rapidly, and industries using this technology are significantly increasing. Further, analysis research using text mining, which is an application of artificial intelligence, is being actively developed in the field of social science research. About 125 laws, including joint laws, have been enacted under the Ministry of Oceans and Fisheries in various sectors including marine environment, fisheries, ships, fishing villages, ports, etc. Research on the laws under the Ministry of Oceans and Fisheries has been progressively conducted, and is steadily increasing quantitatively. In this study, the domestic research trends were analyzed through text mining, targeting the research papers related to laws of the Ministry of Oceans and Fisheries. As part of this research method, first, topic modeling which is a type of text mining was performed to identify potential topics. Second, co-occurrence network analysis was performed, focusing on the keywords in the research papers dealing with specific laws to derive the key themes covered. Finally, author network analysis was performed to explore social networks among authors. The results showed that key topics have been changed by period, and subjects were explored by targeting Ship Safety Law, Marine Environment Management Law, Fisheries Law, etc. Furthermore, in this study, core researchers were selected based on author network analysis, and the tendency for joint research performed by authors was identified. Through this study, changes in the topics for research related to the laws of the Ministry of Oceans and Fisheries were identified up to date, and it is expected that future research topics will be further diversified, and there will be growth of quantitative and qualitative research in the field of oceans and fisheries.