• 제목/요약/키워드: cnt paper

검색결과 204건 처리시간 0.029초

Thermo-mechanical analysis of carbon nanotube-reinforced composite sandwich beams

  • Ebrahimi, Farzad;Farazamandnia, Navid
    • Coupled systems mechanics
    • /
    • 제6권2호
    • /
    • pp.207-227
    • /
    • 2017
  • In this paper Timoshenko beam theory is employed to investigate the vibration characteristics of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) Beams with a stiff core in thermal environment. The material characteristic of carbon nanotubes (CNT) are supposed to change in the thickness direction in a functionally graded form. They can also be calculated through a micromechanical model where the CNT efficiency parameter is determined by matching the elastic modulus of CNTRCs calculated from the rule of mixture with those gained from the molecular dynamics simulations. The differential transform method (DTM) which is established upon the Taylor series expansion is one of the effective mathematical techniques employed to the differential governing equations of sandwich beams. Effects of carbon nanotube volume fraction, slenderness ratio, core-to-face sheet thickness ratio, different thermal environment and various boundary conditions on the free vibration characteristics of FG-CNTRC sandwich beams are studied. It is observed that vibration response of FG-CNTRC sandwich beams is prominently influenced by these parameters.

탄소나노튜브 팁의 집속이온빔에 의한 개선 및 성능 평가 (Improvement of the Carbon Nanotube Tip by Focused Ion Beam and it Performance Evaluation)

  • 한창수;신영현;윤여환;이응숙
    • 대한기계학회논문집A
    • /
    • 제31권1호
    • /
    • pp.139-144
    • /
    • 2007
  • This paper presents development of carbon nanotube (CNT) tip modified by focused ion beam (FIB) and experimental results in non-contact mode of atomic force microscopy (AFM) using fabricated tip. We used an electric field which causes dielectrophoresis, to align and deposit CNTs on a conventional silicon tip. The morphology of the fabricated CNT tip was then modified into a desired shape using focused ion beam. We measured anodic aluminum oxide sample and trench structure to estimate the performance of FIB-modified tip and compared with those of conventional Si tip. We demonstrate that FIB modified tip in non contact mode had superior characteristics than conventional tip in the respects of wear, image resolution and sidewall measurement.

Forced vibration response in nanocomposite cylindrical shells - Based on strain gradient beam theory

  • Shokravi, Maryam
    • Steel and Composite Structures
    • /
    • 제28권3호
    • /
    • pp.381-388
    • /
    • 2018
  • In this paper, forced vibration of micro cylindrical shell reinforced by functionally graded carbon nanotubes (FG-CNTs) is presented. The structure is subjected to transverse harmonic load and modeled by beam model. The size effects are considered based on strain gradient theory containing three small scale parameters. The mixture rule is used for obtaining the effective material properties of the structure. Based on sinusoidal shear deformation theory of beam, energy method and Hamilton's principle, the motion equations are derived. Applying differential quadrature method (DQM) and Newmark method, the frequency curves of the structure are plotted. The effect of different parameters including, CNTs volume percent and distribution type, boundary conditions, size effect and length to thickness ratio on the frequency curves of the structure is studied. Numerical results indicate that the dynamic deflection of the FGX-CNT-reinforced cylindrical is lower with respect to other type of CNT distribution.

Arbitrary Cutting of a single CNT tip in Nanogripper using Electrochemical Etching

  • Lee Junsok;Kwak Yoonkeun;Kim Soohyun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제6권2호
    • /
    • pp.46-49
    • /
    • 2005
  • Recently, many research results have been reported about nano-tip using carbon nanotube because of its better sensing ability compared to a conventional silicon tip. However, it is very difficult to identify the carbon nanotube having proper length for nano-tip and to attach it on a conventional tip. In this paper, a new method is proposed to make a nano-tip and to control its length. The electrochemical etching method was used to control the length by cutting the carbon nanotube of arbitrary length and it was possible to monitor the process through current measurement. The etched volume of carbon nanotube was determined by the amount of applied charge. The carbon nanotube was successfully cut and could be used in the nanogripper.

Focus Ion Beam을 이용한 탄소나노튜브 팁의 조작 (Using Focus Ion Beam Carbon Nanotube Tip Manipulation)

  • 윤여환;한창수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.461-462
    • /
    • 2006
  • This paper reports on the development of a scanning probe microscopy(SPM) tip with caborn nanotubes. We used an electric field which causes dielectrophoresis(DEP), to align and deposit CNTs on a metal-coated SPM tip. Using the CNT attached SPM tip, we have obtained an enhanced resolution and wear property compared to that from the bare silicon tip through the scanning of the surface of the bio materials. The carbon nanotube tip align toward the source of the ion beam allowing their orientation to be changed at precise angles. By this technique, metal coated carbon nanotube tips that are several micrometer in length are prepared for scanning probe microscopy.

  • PDF

집적화된 3 극형 탄소 나노 튜브 전자 방출원의 제작 (Fabrication of Integrated Triode-type CNT Field Emitters)

  • 이정아;문승일;이윤희;주병권
    • 한국전기전자재료학회논문지
    • /
    • 제17권2호
    • /
    • pp.212-216
    • /
    • 2004
  • In this paper, we have fabricated a triode field emitter using carbon nanotubes (CNTs) directly grown by thermal chemical vapor deposition(CVD) method as an electron omission source. Vertically aligned CNTs have been grown in the center of the gate hole, to the size of 1.5 ${\mu}{\textrm}{m}$ in diameter, with help of a sacrificial layer of a type generally used in metal tip process. By the method of tilling the substrate, we made CNTs emitters both with and without SiO$_2$layer, a sidewall protector, deposited on sidewall of gate. After that we researched the electrical characteristics about two types of emitters. In effect, a sidewall protector can enhance the electrical characteristics by suppressing the problem of short circuits between the gate and the CNTs. The leakage current of an emitter with a sidewall protector is approximately sevenfold lower than that of an emitter without it at a gate voltage of 100 V.

Buckling of sandwich plates with FG-CNT-reinforced layers resting on orthotropic elastic medium using Reddy plate theory

  • Shokravi, Maryam
    • Steel and Composite Structures
    • /
    • 제23권6호
    • /
    • pp.623-631
    • /
    • 2017
  • Present paper deals with the temperature-dependent buckling analysis of sandwich nanocomposite plates resting on elastic medium subjected to magnetic field. The lamina layers are reinforced with carbon nanotubes (CNTs) as uniform and functionally graded (FG). The elastic medium is considered as orthotropic Pasternak foundation with considering the effects of thermal loading on the spring and shear constants of medium. Mixture rule is utilized for obtaining the effective material properties of each layer. Adopting the Reddy shear deformation plate theory, the governing equations are derived based on energy method and Hamilton's principle. The buckling load of the structure is calculated with the Navier's method for the simply supported sandwich nanocomposite plates. Parametric study is conducted on the combined effects of the volume percent and distribution types of the CNTs, temperature change, elastic medium, magnetic field and geometrical parameters of the plates on the buckling load of the sandwich structure. The results show that FGX distribution of the CNTs leads to higher stiffness and consequently higher buckling load. In addition, considering the magnetic field increases the buckling load of the sandwich nanocomposite plate.

CNT를 함유한 반도전 재료의 기계적 특성 연구 (A Study on the Mechanical Properties of Semiconductive Shield Materials to Contain CNT)

  • 양훈;양종석;국정호;나창운;박대희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1343-1344
    • /
    • 2007
  • In this paper, we investigated mechanical characteristics about thermal properties in semiconductor layer of power cables. Method of specimen making used solution mixing and Tensometer 2000 of Alpha used for measurement of stress and strain. Semiconductor layer made an experiment on separately environmental temperature$[25^{\circ}C]$ and high temperature$[90^{\circ}C]$ which running temperature$[90^{\circ}C]$ of cables exposed. As a result, specimen of applicable DFS(Dual Filler System) could know mechanical superiority that its structural characteristics reinforcement considered thermal characteristics.

  • PDF

Trend of Carbon Nano Tube and Application

  • Ryu, Kyung-Han;Soh, Dea-Wha;Hong, Sang-Jeen
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.211-212
    • /
    • 2005
  • Semiconductor fabrication technique has been increasingly developed virtue of greater demands, and supplies and applied semiconductor components in respective processes under development for minuteness. Now semiconductor having a line-width of 75nm was commercialized, and it is possible to scale down to 25nm. Accordingly, to cover with limitations, alternatives are actively investigated. In this paper, we overview the trend and applications of carbon nano tube (CNT) and present the future and technology based on existed theories.

  • PDF

나노스케일에서의 비선형 동역학 (Nonlinear Dynamics at the Nanoscale)

  • 이수일;홍상혁;박준형;이장무
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.125-128
    • /
    • 2004
  • AFM(Atomic Force Microscope) becomes a versatile tool in the nanoscale measurements and processes. Especially the tapping mode is a very useful mode in AFM operation to measure and process at the nanoscale. Although the tapping mode has a great potential for the novel techniques such as phase imaging, however, it is not clearly known the fundamental mechanics affected by complex tip-sample interactions. This paper shows the various nonlinear dynamic features in tapping mode AFM microcantilevers including hysteretic jumps and period doublings of the microcantilevers. Also it is discussed the complex dynamics of CNT(Carbon Nanotube) probes and the opportunities on the nanoscale nonlinear dynamics.

  • PDF