The Journal of the Korea institute of electronic communication sciences
/
v.16
no.4
/
pp.625-632
/
2021
This paper studies the effect of the number of filters in the CNN (Convolutional Neural Network) layer on the performance of a noise attenuator. Speech is estimated from a noised speech signal using a 64-neuron, 16-kernel CNN filter and an error back-propagation algorithm. In this study, in order to verify the performance of the noise attenuator with respect to the number of filters, a program using Keras library was written and simulation was performed. As a result of simulation, it can be seen that this system has the smallest MSE (Mean Squared Error) and MAE (Mean Absolute Error) values when the number of filters is 16, and the performance is the lowest when there are 4 filters. And when there are more than 8 filters, it was shown that the MSE and MAE values do not differ significantly depending on the number of filters. From these results, it can be seen that about 8 or more filters must be used to express the characteristics of the speech signal.
Park, Jinsang;Song, Min jae;Choi, Eun ju;Kim, Byoung soo;Moon, Young ho
Journal of Aerospace System Engineering
/
v.16
no.4
/
pp.45-52
/
2022
In the field of UAM, which is attracting attention as a next-generation transportation system, technology developments for using UAVs have been actively conducted in recent years. Since UAVs adopted with these technologies are mainly operated in urban areas, it is imperative that accidents are prevented. However, it is not easy to predict the abnormal flight state of an UAV causing a crash, because of its strong non-linearity. In this paper, we propose a method for predicting a flight state of an UAV, based on a CNN-LSTM hybrid model. To predict flight state variables at a specific point in the future, the proposed model combines the CNN model extracting temporal and spatial features between flight data, with the LSTM model extracting a short and long-term temporal dependence of the extracted features. Simulation results show that the proposed method has better performance than the prediction methods, which are based on the existing artificial neural network model.
Journal of the Korea Institute of Information and Communication Engineering
/
v.26
no.7
/
pp.981-988
/
2022
The intelligent production plant called smart factories that apply information and communication technology (ICT) are collecting data in real time through various sensors. Recently, researches that effectively applying to these collected data have gained a lot of attention. This paper proposes a method for the tool condition monitoring based on the sound signal generated in machining process. First, it not only detects a fault tool, but also presents various tool states according to idle and active operation. The second, it's to represent the power spectrum of the sounds as images and apply some transformations on them in order to reveal, expose, and emphasize the health patterns that are hidden inside them. Finally, the contrast-enhanced PSD image obtained is diagnosed by using CNN. The results of the experiments demonstrate the high discrimination potential afforded by the proposed sound PSD image + CNN and show high diagnostic results according to the tool status.
Recently, research on behavior analysis tracking human posture and movement has been actively conducted. In particular, OpenPose, an open-source software developed by CMU in 2017, is a representative method for estimating human appearance and behavior. OpenPose can detect and estimate various body parts of a person, such as height, face, and hands in real-time, making it applicable to various fields such as smart healthcare, exercise training, security systems, and medical fields. In this paper, we propose a method for classifying four exercise movements - Squat, Walk, Wave, and Fall-down - which are most commonly performed by users in the gym, using OpenPose-based deep learning models, DNN and CNN. The training data is collected by capturing the user's movements through recorded videos and real-time camera captures. The collected dataset undergoes preprocessing using OpenPose. The preprocessed dataset is then used to train the proposed DNN and CNN models for exercise movement classification. The performance errors of the proposed models are evaluated using MSE, RMSE, and MAE. The performance evaluation results showed that the proposed DNN model outperformed the proposed CNN model.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2022.05a
/
pp.279-282
/
2022
Acute lymphoblastic leukemia is an acute leukemia caused by suppression of bone marrow function due to overgrowth of immature lymphocytes in the bone marrow. It accounts for 30% of acute leukemia in adults, and children show a cure rate of over 80% with chemotherapy, while adults show a low survival rate of 20% to 50%. However, research on a machine learning algorithm based on medical image data for the diagnosis of acute lymphoblastic leukemia is in the initial stage. In this paper, we compare and analyze CNN algorithm models for quick and accurate diagnosis. Using four models, an experimental environment for comparative analysis of acute lymphoblastic leukemia diagnostic models was established, and the algorithm with the best accuracy was selected for the given medical image data. According to the experimental results, among the four CNN models, the InceptionV3 model showed the best performance with an accuracy of 98.9%.
Journal of the Institute of Convergence Signal Processing
/
v.23
no.4
/
pp.222-227
/
2022
In this paper, we implemented a Korean text generation and classification model based on a deep learning algorithm that can be applied to various industries. It consists of two implemented GAN-based Korean handwriting generation models and CNN-based Korean handwriting classification models. The GAN model consists of a generator model for generating fake Korean handwriting data and a discriminator model for discriminating fake handwritten data. In the case of the CNN model, the model was trained using the 'PHD08' dataset, and the learning result was 92.45. It was confirmed that Korean handwriting was classified with % accuracy. As a result of evaluating the performance of the classification model by integrating the Korean cursive data generated through the implemented GAN model and the training dataset of the existing CNN model, it was confirmed that the classification performance was 96.86%, which was superior to the existing classification performance.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2022.05a
/
pp.150-153
/
2022
This paper reports a technique that automatically extracts object shapes through Dense-Net, and subsequently, detects the objects using Mask R-CNN in a manufacturing site, in which workers and objects are mixed. It is based on the customized factory dataset by targeting workers, machines, tools, control boxes, and products as the objects. Mask R-CNN supports multi-object recognition as a well-known object recognition method, while Dense-Net effectively extracts a feature from multiple and overlapping objects. After immediate implementation using the two technologies, the object is naturally extracted from a still image of the manufacturing site to describe image. Afterwards, the result is planned to be used to detect workers' abnormal behavior by adding a label on the objects.
This paper proposes a method to improve the performance of ship identification through lofargram analysis of ship noise by applying the Hough Transform to a Convolutional Neural Network (CNN) model. When processing the signals received by a passive sonar, the time-frequency domain representation known as lofargram is generated. The machinery noise radiated by ships appears as tonal signals on the lofargram, and the class of the ship can be specified by analyzing it. However, analyzing lofargram is a specialized and time-consuming task performed by well-trained analysts. Additionally, the analysis for target identification is very challenging because the lofargram also displays various background noises due to the characteristics of the underwater environment. To address this issue, the Hough Transform is applied to the lofargram to add lines, thereby emphasizing the tonal signals. As a result of identification using CNN models on both the original lofargrams and the lofargrams with Hough transform, it is shown that the application of the Hough transform improves lofargram identification performance, as indicated by increased accuracy and macro F1 scores for three different CNN models.
Park, DaeKyeong;Shin, DongIl;Shin, DongKyoo;Kim, Sangsoo
KIPS Transactions on Software and Data Engineering
/
v.10
no.7
/
pp.271-278
/
2021
As the current cyber attacks become more intelligent, the existing Intrusion Detection System is difficult for detecting intelligent attacks that deviate from the existing stored patterns. In an attempt to solve this, a model of a deep learning-based intrusion detection system that analyzes the pattern of intelligent attacks through data learning has emerged. Intrusion detection systems are divided into host-based and network-based depending on the installation location. Unlike network-based intrusion detection systems, host-based intrusion detection systems have the disadvantage of having to observe the inside and outside of the system as a whole. However, it has the advantage of being able to detect intrusions that cannot be detected by a network-based intrusion detection system. Therefore, in this study, we conducted a study on a host-based intrusion detection system. In order to evaluate and improve the performance of the host-based intrusion detection system model, we used the host-based Leipzig Intrusion Detection-Data Set (LID-DS) published in 2018. In the performance evaluation of the model using that data set, in order to confirm the similarity of each data and reconstructed to identify whether it is normal data or abnormal data, 1D vector data is converted to 3D image data. Also, the deep learning model has the drawback of having to re-learn every time a new cyber attack method is seen. In other words, it is not efficient because it takes a long time to learn a large amount of data. To solve this problem, this paper proposes the Siamese Convolutional Neural Network (Siamese-CNN) to use the Few-Shot Learning method that shows excellent performance by learning the little amount of data. Siamese-CNN determines whether the attacks are of the same type by the similarity score of each sample of cyber attacks converted into images. The accuracy was calculated using Few-Shot Learning technique, and the performance of Vanilla Convolutional Neural Network (Vanilla-CNN) and Siamese-CNN was compared to confirm the performance of Siamese-CNN. As a result of measuring Accuracy, Precision, Recall and F1-Score index, it was confirmed that the recall of the Siamese-CNN model proposed in this study was increased by about 6% from the Vanilla-CNN model.
Kim, Hyunbin;Kim, Mingyu;Park, Yonggun;Yang, Sang-Yun;Chung, Hyunwoo;Kwon, Ohkyung;Yeo, Hwanmyeong
Journal of the Korean Wood Science and Technology
/
v.47
no.2
/
pp.229-238
/
2019
Various wood defects occur during tree growing or wood processing. Thus, to use wood practically, it is necessary to objectively assess their quality based on the usage requirement by accurately classifying their defects. However, manual visual grading and species classification may result in differences due to subjective decisions; therefore, computer-vision-based image analysis is required for the objective evaluation of wood quality and the speeding up of wood production. In this study, the SIFT+k-NN and CNN models were used to implement a model that automatically classifies knots and analyze its accuracy. Toward this end, a total of 1,172 knot images in various shapes from five domestic conifers were used for learning and validation. For the SIFT+k-NN model, SIFT technology was used to extract properties from the knot images and k-NN was used for the classification, resulting in the classification with an accuracy of up to 60.53% when k-index was 17. The CNN model comprised 8 convolution layers and 3 hidden layers, and its maximum accuracy was 88.09% after 1205 epoch, which was higher than that of the SIFT+k-NN model. Moreover, if there is a large difference in the number of images by knot types, the SIFT+k-NN tended to show a learning biased toward the knot type with a higher number of images, whereas the CNN model did not show a drastic bias regardless of the difference in the number of images. Therefore, the CNN model showed better performance in knot classification. It is determined that the wood knot classification by the CNN model will show a sufficient accuracy in its practical applicability.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.