• Title/Summary/Keyword: clusters of galaxies

Search Result 348, Processing Time 0.024 seconds

THE QUEST FOR COSMIC RAY PROTONS IN GALAXY CLUSTERS

  • PFROMMER C.;ENSSLIN T. A.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.455-460
    • /
    • 2004
  • There have been many speculations about the presence of cosmic ray protons (CRps) in galaxy clusters over the past two decades. However, no direct evidence such as the characteristic $\gamma$-ray signature of decaying pions has been found so far. These pions would be a direct tracer of hadronic CRp interactions with the ambient thermal gas also yielding observable synchrotron and inverse Compton emission by additionally produced secondary electrons. The obvious question concerns the type of galaxy clusters most likely to yield a signal: Particularly suited sites should be cluster cooling cores due to their high gas and magnetic energy densities. We studied a nearby sample of clusters evincing cooling cores in order to place stringent limits on the cluster CRp population by using non-detections of EGRET. In this context, we examined the possibility of a hadronic origin of Coma-sized radio halos as well as radio mini-halos. Especially for mini-halos, strong clues are provided by the very plausible small amount of required CRp energy density and a matching radio profile. Introducing the hadronic minimum energy criterion, we show that the energetically favored CRp energy density is constrained to $2\%{\pm}1\%$ of the thermal energy density in Perseus. We also studied the CRp population within the cooling core region of Virgo using the TeV $\gamma$-ray detection of M 87 by HEGRA. Both the expected radial $\gamma$-ray profile and the required amount of CRp support this hadronic scenario.

How did the merger remnant galaxy M85 form?: A follow-up spectroscopy for M85 globular clusters

  • Ko, Youkyung;Lee, Myung Gyoon;Sohn, Jubee;Lim, Sungsoon;Park, Hong Soo;Hwang, Narae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.33.1-33.1
    • /
    • 2015
  • M85 is a nearby merger remnant galaxy located at the northern part of the Virgo Cluster. Because of its remarkable merging features, it is an interesting object to investigate its formation history. Globular clusters are a great tracer of the formation history of early-type galaxies, so that we study the globular cluster system of M85. It has been already found that there are "intermediate-color" globular clusters as well as blue and red ones based on the photometric survey using CFHT/Megacam. For follow-up research, we obtain the spectra of 21 globular clusters in the central region of M85 using Gemini-N/GMOS. We estimate their ages and metallicities based on the strength of Lick indices. We detect the intermediate-age population (~ 2 Gyr) with solar metallicities, comprising about 50% of the observed globular clusters, as well as old and metal-poor population. It suggests that M85 experienced a major merging event around 2 Gyr ago. We discuss these results regarding to the formation history of M85.

  • PDF

Compact Binaries Ejected from Globular Clusters as GW Sources

  • Bae, Yeong-Bok;Kim, Chunglee;Lee, Hyung Mok
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.57.2-57.2
    • /
    • 2013
  • Based on N-body simulations, we find out that significant fraction of dynamically formed BH-BH (10 $M_{\odot}$ and NS-NS (1.4 $M_{\odot$ ecah) binaries are ejected from globular clusters. About 30 percent of compact stars are ejected in the form of binary. The merging time of ejected binary depends on the velocity dispersion of globular cluster. Some of ejected binaries have merging time-scales shorter than Hubble time and are expected to produce gravitational waves that can be detectable by the advanced ground-based interferometers. The merger rates of ejected BH-BH and NS-NS binaries per globular cluster are estimated to be 3.5 and 17 per Gyr, respectively. Assuming the spatial density of globular clusters as 8.4 $h^3$ clusters $Mpc^{-3}$ and extrapolating to the horizon distance of the advanced LIGO-Virgo network, we expect the detection rates solely attributed to BH-BH and NS-NS with cluster origin are to be 42 and 1.7 $yr^{-1}$, respectively. Besides, we find out that BH-NS binary ejection hardly occurs in globular clusters and dynamically formed compact binaries may possibly be the source of short GRBs whose locations are far from host galaxies.

  • PDF

Mystery of the Most Isolated Globular Cluster in the Local Universe

  • Jang, In Sung;Lim, Sungsoon;Park, Hong Soo;Lee, Myung Gyoon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.68.2-68.2
    • /
    • 2012
  • We present a discovery of two new globular clusters in the Hubble Space Telescope archive images of the M81 group. They are located much farther from both M81 and M82 in the sky, compared with previously known star clusters in these galaxies. Both clusters show that higher luminosity and larger effective radius than typical globular clusters in Milky Way and M81. Using the available spectroscopic data provided by the Sloan Digital Sky Survey, we derive a low metallicity with [Fe/H] ${\approx}$ -2.3 and an old age ~14 Gyr for GC-2. The I-band magnitude of the tip of the RGB for GC-1 is consistent with that of the halo stars in the GC-1 and GC-2 field. However, that of GC-2 is 0.26 mag fainter than its field. It shows that GC-2 is about 400 kpc behind the M81 halo along our line of sight. The deprojected distance to GC-2 from M81 is much larger than any other known globular clusters in the local universe. We discuss the possible scenarios to explain the existence of globular cluster in such an extremely isolated environment.

  • PDF

The milli-arcsecond scale radio properties of central AGNs in cool-core and non cool-core clusters

  • Baek, Junhyun;Chung, Aeree;Tremou, Evangelia;Sohn, Bongwon;Jung, Taehyun;Ro, Hyunwook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.68.4-69
    • /
    • 2016
  • We report preliminary results of KaVA observations of central galaxies in cool-core and non cool-core clusters. The main goal is to study how cooling environments of galaxy clusters affect the central AGN activities especially at its innermost region. For KaVA observations, 7 radio bright AGNs have been selected from the extended Highest Flux Galaxy Cluster Sample (eHIFLUGCS; the X-ray flux limited & all sky galaxy cluster catalog) with various cooling timescales. In our previous KVN study, we have found that most AGNs in the cool-core clusters show the hint of pc-scale jet-like features while the ones in the non cool-core clusters do not. Using the KaVA 22/43 GHz data of a much higher resolution than the KVN resolution, we have investigated detailed pc-scale jet properties such as physical size, morphology, and radiative age. Based on the KaVA data, we discuss the effect of cluster cooling environment on the evolution of AGNs in the cluster center.

  • PDF

THE UNUSUAL STELLAR MASS FUNCTION OF STARBURST CLUSTERS

  • Dib, Sami
    • Journal of The Korean Astronomical Society
    • /
    • v.40 no.4
    • /
    • pp.157-160
    • /
    • 2007
  • I present a model to explain the mass segregation and shallow mass functions observed in the central parts of starburst stellar clusters. The model assumes that the initial pre-stellar cores mass function resulting from the turbulent fragmentation of the proto-cluster cloud is significantly altered by the cores coalescence before they collapse to form stars. With appropriate, yet realistic parameters, this model based on the competition between cores coalescence and collapse reproduces the mass spectra of the well studied Arches cluster. Namely, the slopes at the intermediate and high mass ends, as well as the peculiar bump observed at $6M_{\bigodot}$. This coalescence-collapse process occurs on a short timescale of the order of the free fall time of the proto-cluster cloud (i.e., a few $10^4$ years), suggesting that mass segregation in Arches and similar clusters is primordial. The best fitting model implies the total mass of the Arches cluster is $1.45{\times}10^5M_{\bigodot}$, which is slightly higher than the often quoted, but completeness affected, observational value of a few $10^4M_{\bigodot}$. The model implies a star formation efficiency of ${\sim}30$ percent which implies that the Arches cluster is likely to a gravitationally bound system.

IMAGING NON-THERMAL X-RAY EMISSION FROM GALAXY CLUSTERS: RESULTS AND IMPLICATIONS

  • HENRIKSEN MARK;HUDSON DANNY
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.299-305
    • /
    • 2004
  • We find evidence of a hard X-ray excess above the thermal emission in two cool clusters (Abell 1750 and IC 1262) and a soft excess in two hot clusters (Abell 754 and Abell 2163). Our modeling shows that the excess components in Abell 1750, IC 1262, and Abell 2163 are best fit by a steep power law indicative of a significant non-thermal component. In the case of Abell 754, the excess emission is thermal, 1 ke V emission. We analyze the dynamical state of each cluster and find evidence of an ongoing or recent merger in all four clusters. In the case of Abell 2163, the detected, steep spectrum, non-thermal X-ray emission is shown to be associated with the weak merger shock seen in the temperature map. However, this shock is not able to produce the flatter spectrum radio halo which we attribute to post-shock turbulence. In Abell 1750 and IC 1262, the shocked gas appears to be spatially correlated with non-thermal emission suggesting cosmic-ray acceleration at the shock front.

Abell 2261: a fossil galaxy cluster in a transition phase

  • Kim, Hyowon;Ko, Jongwan;Kim, Jae-woo;Smith, Rory;Song, Hyunmi;Hwang, Ho Seong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.58.2-58.2
    • /
    • 2018
  • Fossil groups of galaxies have characteristic features of a dominant central elliptical galaxy (${\Delta}M_{12}$ > 2 in $0.5R_{vir}$) embedded in highly relaxed X-ray halo, which indicates dynamically stable and evolved systems. These are thought as a final stage of the evolution of galaxy groups in the hierarchical structure formation scenario. However, the formation and evolution of fossil clusters are still unclear due to lack of detailed studies. Therefore, we perform a kinematic research of a known fossil cluster Abell 2261 (A2261 hereafter) using spectroscopic data of 589 galaxies in the A2261 field. Even though A2261 is known as a fossil cluster, previous studies found several unusual features such as quite high X-ray entropy for a stable cluster, and an elongated shape, which are not expected in standard fossil clusters. Using the caustic method, we identify cluster member galaxies and discover a second bright galaxy (${\Delta}M_{12}=1.68$) at ${\sim}1.5R_{vir}$. The presence of such a bright galaxy can break the current fossil state of cluster in the near future. In addition, with two independent substructure finding methods, we confirm that the previously detected elongated galaxy distribution of the cluster is a real feature. These findings indicate that A2261 is not in a fully stable state, unlike the existing fossil definition diagnostic. We require a more stringent criterion for the fossil definition to represent a genuinely final stage of cluster evolution.

  • PDF

Observational Evidence of Merging and Accretion in the Milky Way Galaxy from the Spatial Distribution of Stars in Globular Clusters

  • Chun, Sang-Hyun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.76-76
    • /
    • 2013
  • The current hierarchical model of galaxy formation predicts that galaxy halos contain merger relics in the form of long stellar streams. In order to find stellar substructures in galaxy, we focused our investigation on the stellar spatial density around globular clusters and on the quantitative properties of the evolved sequences in the color-magnitude diagrams (CMDs). First, we investigated the spatial configuration of stars around five metal-poor globular clusters in halo region (M15, M30, M53, NGC 5053, and NGC 5466) and one metal-poor globular cluster in bulge region (NGC 6626). Our findings indicate that all of these globular clusters show strong evidence of extratidal features in the form of extended tidal tails around the clusters. The orientations of the extratidal features show the signatures of tidal tails tracing the clusters' orbits and the effects of dynamical interactions with the galaxy. These features were also confirmed by the radial surface density profiles and azimuthal number density profiles. Our results suggest that these six globular clusters are potentially associated with the satellite galaxies merged into the Milky Way. Second, we derived the morphological parameters of the red giant branch (RGB) from the near-infrared CMDs of 12 metal-poor globular clusters in the Galactic bulge. The photometric RGB shape indices such as colors at fixed magnitudes, magnitudes at fixed colors, and the RGB slope were measured for each cluster. The magnitudes of the RGB bump and tip were also estimated. The derived RGB parameters were used to examine the overall behavior of the RGB morphology as a function of cluster metallicity. The behavior of the RGB shape parameters was also compared with the previous observational calibration relation and theoretical predictions of the Yonsei-Yale isochrones. Our results of studies for stellar spatial distribution around globular clusters and the morphological properties of RGB stars in globular clusters could add further observational evidence of merging scenario of galaxy formation.

  • PDF

Phase-space Analysis in the Group and Cluster Environment: Time Since Infall and Tidal Mass Loss

  • Rhee, Jinsu;Smith, Rory;Choi, Hoseung;Yi, Sukyoung K.;Jaffe, Yara;Candlish, Graeme;Sanchez-Janssen, Ruben
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.45.2-45.2
    • /
    • 2017
  • Using the latest cosmological hydrodynamic N-body simulations of groups and clusters, we study how location in phase-space coordinates at z = 0 can provide information on environmental effects acting in clusters. We confirm the results of previous authors showing that galaxies tend to follow a typical path in phase-space as they settle into the cluster potential. As such, different regions of phase-space can be associated with different times since first infalling into the cluster. However, in addition, we see a clear trend between total mass loss due to cluster tides and time since infall. Thus, we find location in phase-space provides information on both infall time and tidal mass loss. We find the predictive power of phase-space diagrams remains even when projected quantities are used (i.e.,line of sight velocities, and projected distances from the cluster). We provide figures that can be directly compared with observed samples of cluster galaxies and we also provide the data used to make them as supplementary data to encourage the use of phase-space diagrams as a tool to understand cluster environmental effects. We find that our results depend very weakly on galaxy mass or host mass, so the predictions in our phase-space diagrams can be applied to groups or clusters alike, or to galaxy populations from dwarfs up to giants.

  • PDF