• Title/Summary/Keyword: clustering by unsupervised learning

Search Result 86, Processing Time 0.029 seconds

Unsupervised Outpatients Clustering: A Case Study in Avissawella Base Hospital, Sri Lanka

  • Hoang, Huu-Trung;Pham, Quoc-Viet;Kim, Jung Eon;Kim, Hoon;Park, Junseok;Hwang, Won-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.4
    • /
    • pp.480-490
    • /
    • 2019
  • Nowadays, Electronic Medical Record (EMR) has just implemented at few hospitals for Outpatient Department (OPD). OPD is the diversified data, it includes demographic and diseases of patient, so it need to be clustered in order to explore the hidden rules and the relationship of data types of patient's information. In this paper, we propose a novel approach for unsupervised clustering of patient's demographic and diseases in OPD. Firstly, we collect data from a hospital at OPD. Then, we preprocess and transform data by using powerful techniques such as standardization, label encoder, and categorical encoder. After obtaining transformed data, we use some strong experiments, techniques, and evaluation to select the best number of clusters and best clustering algorithm. In addition, we use some tests and measurements to analyze and evaluate cluster tendency, models, and algorithms. Finally, we obtain the results to analyze and discover new knowledge, meanings, and rules. Clusters that are found out in this research provide knowledge to medical managers and doctors. From these information, they can improve the patient management methods, patient arrangement methods, and doctor's ability. In addition, it is a reference for medical data scientist to mine OPD dataset.

A Low Complexity PTS Technique using Threshold for PAPR Reduction in OFDM Systems

  • Lim, Dai Hwan;Rhee, Byung Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.9
    • /
    • pp.2191-2201
    • /
    • 2012
  • Traffic classification seeks to assign packet flows to an appropriate quality of service (QoS) class based on flow statistics without the need to examine packet payloads. Classification proceeds in two steps. Classification rules are first built by analyzing traffic traces, and then the classification rules are evaluated using test data. In this paper, we use self-organizing map and K-means clustering as unsupervised machine learning methods to identify the inherent classes in traffic traces. Three clusters were discovered, corresponding to transactional, bulk data transfer, and interactive applications. The K-nearest neighbor classifier was found to be highly accurate for the traffic data and significantly better compared to a minimum mean distance classifier.

Acoustic Emission Studies on the Structural Integrity Test of Welded High Strength Steel using Pattern Recognition (패턴인식을 이용한 고장력강의 용접 구조건전성 평가에 대한 음향방출 사례연구)

  • Kim, Gil-Dong;Rhee, Zhang-Kyu
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2008.04a
    • /
    • pp.185-196
    • /
    • 2008
  • The objective of this study is to evaluate the mechanical behaviors and structural integrity of the weldment of high strength steel by using an acoustic emission (AE) techniques. Simple tension and AE tests were conducted against the 3 kind of welding test specimens. In order to analysis the effectiveness of weldability, joinability and structural integrity, we used K-means clustering method as a unsupervised learning pattern recognition algorithm for obtained multivariate AE main data sets, such as AE counts, energy, amplitude, hits, risetime, duration, counts to peak and rms signals. Through the experimental results, the effectiveness of the proposed method is discussed.

  • PDF

Acoustic Emission Studies on the Structural Integrity Test of Welded High Strength Steel using Pattern Recognition: Focused on Tensile Test (패턴인식을 이용한 고장력강의 용접 구조건전성 평가에 대한 음향방출 사례연구: 인장시험을 중심으로)

  • Kim, Gil-Dong;Rhee, Zhang-Kyu
    • Journal of the Korea Safety Management & Science
    • /
    • v.10 no.4
    • /
    • pp.127-134
    • /
    • 2008
  • The objective of this study is to evaluate the mechanical behaviors and structural integrity of the weldment of high strength steel by using an acoustic emission (AE) techniques. Monotonic simple tension and AE tests were conducted against the 3 kinds of welded specimen. In order to analysis the effectiveness of weldability, joinability and structural integrity, we used K-means clustering method as a unsupervised learning pattern recognition algorithm for obtained multi-variate AE main data sets, such as AE counts, energy, amplitude, hits, risetime, duration, counts to peak and rms signals. Through the experimental results, the effectiveness of the proposed method is discussed.

A Text Detection Method Using Wavelet Packet Analysis and Unsupervised Classifier

  • Lee, Geum-Boon;Odoyo Wilfred O.;Kim, Kuk-Se;Cho, Beom-Joon
    • Journal of information and communication convergence engineering
    • /
    • v.4 no.4
    • /
    • pp.174-179
    • /
    • 2006
  • In this paper we present a text detection method inspired by wavelet packet analysis and improved fuzzy clustering algorithm(IAFC).This approach assumes that the text and non-text regions are considered as two different texture regions. The text detection is achieved by using wavelet packet analysis as a feature analysis. The wavelet packet analysis is a method of wavelet decomposition that offers a richer range of possibilities for document image. From these multi scale features, we adapt the improved fuzzy clustering algorithm based on the unsupervised learning rule. The results show that our text detection method is effective for document images scanned from newspapers and journals.

Hybrid Learning-Based Cell Morphology Profiling Framework for Classifying Cancer Heterogeneity (암의 이질성 분류를 위한 하이브리드 학습 기반 세포 형태 프로파일링 기법)

  • Min, Chanhong;Jeong, Hyuntae;Yang, Sejung;Shin, Jennifer Hyunjong
    • Journal of Biomedical Engineering Research
    • /
    • v.42 no.5
    • /
    • pp.232-240
    • /
    • 2021
  • Heterogeneity in cancer is the major obstacle for precision medicine and has become a critical issue in the field of a cancer diagnosis. Many attempts were made to disentangle the complexity by molecular classification. However, multi-dimensional information from dynamic responses of cancer poses fundamental limitations on biomolecular marker-based conventional approaches. Cell morphology, which reflects the physiological state of the cell, can be used to track the temporal behavior of cancer cells conveniently. Here, we first present a hybrid learning-based platform that extracts cell morphology in a time-dependent manner using a deep convolutional neural network to incorporate multivariate data. Feature selection from more than 200 morphological features is conducted, which filters out less significant variables to enhance interpretation. Our platform then performs unsupervised clustering to unveil dynamic behavior patterns hidden from a high-dimensional dataset. As a result, we visualize morphology state-space by two-dimensional embedding as well as representative morphology clusters and trajectories. This cell morphology profiling strategy by hybrid learning enables simplification of the heterogeneous population of cancer.

Multiple Texture Image Recognition with Unsupervised Block-based Clustering (비교사 블록-기반 군집에 의한 다중 텍스쳐 영상 인식)

  • Lee, Woo-Beom;Kim, Wook-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.9B no.3
    • /
    • pp.327-336
    • /
    • 2002
  • Texture analysis is an important technique in many image understanding areas, such as perception of surface, object, shape and depth. But the previous works are intend to the issue of only texture segment, that is not capable of acquiring recognition information. No unsupervised method is basased on the recognition of texture in image. we propose a novel approach for efficient texture image analysis that uses unsupervised learning schemes for the texture recognition. The self-organization neural network for multiple texture image identification is based on block-based clustering and merging. The texture features used are the angle and magnitude in orientation-field that might be different from the sample textures. In order to show the performance of the proposed system, After we have attempted to build a various texture images. The final segmentation is achieved by using efficient edge detection algorithm applying to block-based dilation. The experimental results show that the performance of the system Is very successful.

Binary clustering network for recognition of keywords in continuous speech (연속음성중 키워드(Keyword) 인식을 위한 Binary Clustering Network)

  • 최관선;한민홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.870-876
    • /
    • 1993
  • This paper presents a binary clustering network (BCN) and a heuristic algorithm to detect pitch for recognition of keywords in continuous speech. In order to classify nonlinear patterns, BCN separates patterns into binary clusters hierarchically and links same patterns at root level by using the supervised learning and the unsupervised learning. BCN has many desirable properties such as flexibility of dynamic structure, high classification accuracy, short learning time, and short recall time. Pitch Detection algorithm is a heuristic model that can solve the difficulties such as scaling invariance, time warping, time-shift invariance, and redundance. This recognition algorithm has shown recognition rates as high as 95% for speaker-dependent as well as multispeaker-dependent tests.

  • PDF

Kohonen Clustring Network Using The Fuzzy System (퍼지 시스템을 이용한 코호넨 클러스터링 네트웍)

  • 강성호;손동설;임중규;박진성;엄기환
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.05a
    • /
    • pp.322-325
    • /
    • 2002
  • We proposed a method to improve KCN's problems. Proposed method adjusts neighborhood and teaming rate by fuzzy logic system. The input of fuzzy logic system used a distance and a change rate of distance. The output was used by site of neighborhood and learning rate. The rule base of fuzzy logic system was taken by using KCN simulation results. We used Anderson's Iris data to illustrate this method, and simulation results showed effect of performance.

  • PDF

Beta-wave Correlation Analysis Model based on Unsupervised Machine Learning (비지도학습 머신러닝에 기반한 베타파 상관관계 분석모델)

  • Choi, Sung-Ja
    • Journal of Digital Convergence
    • /
    • v.17 no.3
    • /
    • pp.221-226
    • /
    • 2019
  • The characteristic of the beta wave among the EEG waves corresponds to the stress area of human perception. The over-bandwidth of the stress is extracted by analyzing the beta-wave correlation between the low-bandwidth and high-bandwidth. We present a KMeans clustering analysis model for unsupervised machine learning to construct an analytical model for analyzing and extracting the beta-wave correlation. The proposed model classifies the beta wave region into clusters of similar regions and identifies anomalous waveforms in the corresponding clustering category. The abnormal group of waveform clusters and the normal category leaving region are discriminated from the stress risk group. Using this model, it is possible to discriminate the degree of stress of the cognitive state through the EEG waveform, and it is possible to manage and apply the cognitive state of the individual.