• Title/Summary/Keyword: clusterhead

Search Result 19, Processing Time 0.024 seconds

Dual Coalescent Energy-Efficient Algorithm for Wireless Mesh Networks

  • Que, Ma. Victoria;Hwang, Won-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.6
    • /
    • pp.760-769
    • /
    • 2007
  • In this paper, we consider a group mobility model to formulate a clustering mechanism called Dual Coalescent Energy-Efficient Algorithm (DCEE) which is scalable, distributed and energy-efficient for wireless mesh network. The differences of the network nodes will be distinguished to exploit heterogeneity of the network. Furthermore, a topology control, that is, adjusting the transmission range to further reduce power consumption will be integrated with the cluster formation to improve network lifetime and connectivity. Along with network lifetime and power consumption, clusterhead changes will be measured as a performance metric to evaluate the. effectiveness and robustness of the algorithm.

  • PDF

An Energy-efficient Clustering algorithm using the Guaranteed Distance for Wireless Sensor Networks (무선 센서 네트워크에서의 에너지 효율을 위한 클러스터링 알고리즘)

  • Kim N.H.;Park T.R.;Kwon W.H.;Chang B.S.;Kim Y.H.;Lee B.Y.
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.382-385
    • /
    • 2004
  • In this paper, a new clustering algorithm using the Guaranteed Distance is proposed. In the new algorithm, the appropriate distribution of clusterheads is accomplished by guarantee the stochastic average distance between clusterhead (CH)s. Using this algorithm, the communication cost from clusterheads to their member nodes and the load variance in each clusterheads are reduced. Therefore, the network lifetime can be extended and the fair energy consumption for all nodes can be achieved.

  • PDF

A Study on Routing Protocol using C-NODE for Mobile Ad-Hoc Networking (Mobile Ad-hoc Networking에서의 C-NODE를 이용한 Routing Protocol에 관한 연구)

  • Choi, Bong-Han
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.1 s.39
    • /
    • pp.195-201
    • /
    • 2006
  • This thesis proposes hybrid routing protocol that mix proactive routing protocol and reactive routing protocol used in Ad hoc network. Proposed method is that establish special node offering network service of nods which construct Ad hoc network and do routing different from existing hybrid routing protocol, ZRP. Special node doing these parts is called C-node. Routing using C-node can accompany efficient routing by decreasing path institution time and flooding time than existing routing protocol.

  • PDF

A Combining Scheme to Reduce Power Consumption in Cooperation and Cyclic Code for Wireless Sensor Networks (협력-순환 부호를 이용한 무선 센서 네트워크에서의 전력 소모 감소를 위한 결합기법에 관한 연구)

  • Kong, Hyung Yun;Hwang, Yun Kyeong;Hong, Seong Wook
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.6
    • /
    • pp.63-69
    • /
    • 2008
  • In this paper, our goal is to find a power-effective protocol that improves the accuracy of transmission in sensor networks. Therefore we propose a cooperative communication protocol based on MRC(Maximal Ratio Combining) and cyclic code. In our proposal, one sensor node assists two others to communicate with a clusterhead that can get diversity effect and MRC can improve diversity effect also. The proposed protocol with cyclic code can correct error up to 3-bit and reduce decoding complexity compared with convolutional code. Simulation results reveal proposed protocol can save the network energy up to 6dB over single-hop protocol at BER(Bit Error Rate) of $10^{-2}$.

  • PDF

Power-and-Bandwidth Efficient Cooperative Transmission Protocol in Wireless Sensor Networks (전력 및 대역폭 효율성있는 무선센서네트워크협력 전송에 관한 연구)

  • Khuong Ho Van;Kong Hyung-Yun;Choi Jeong-Ho;Jeong Hwi-Jae
    • The KIPS Transactions:PartC
    • /
    • v.13C no.2 s.105
    • /
    • pp.185-194
    • /
    • 2006
  • In this paper, we first propose a power-and-bandwidth efficient cooperative transmission protocol where a sensor node assists two others for their data transmission to a clusterhead in WSNs (Wireless Sensor Networks) using LEACH (Low-Energy Adaptive Clustering Hierarchy). Then we derive its closed-form BER expression which Is also a general BER one for the decode-and-forward protocol (DF) and Prove that the proposed protocol performs as same as the conventional DF but obtains higher spectral efficiency. A variety of numerical results reveal the cooperation can save the network power up to 11dB over direct transmission at BER of $10^{-3}$.

Delay-Constrained Energy-Efficient Cluster-based Multi-Hop Routing in Wireless Sensor Networks

  • Huynh, Trong-Thua;Dinh-Duc, Anh-Vu;Tran, Cong-Hung
    • Journal of Communications and Networks
    • /
    • v.18 no.4
    • /
    • pp.580-588
    • /
    • 2016
  • Energy efficiency is the main objective in the design of a wireless sensor network (WSN). In many applications, sensing data must be transmitted from sources to a sink in a timely manner. This paper describes an investigation of the trade-off between two objectives in WSN design: minimizing energy consumption and minimizing end-to-end delay. We first propose a new distributed clustering approach to determining the best clusterhead for each cluster by considering both energy consumption and end-to-end delay requirements. Next, we propose a new energy-cost function and a new end-to-end delay function for use in an inter-cluster routing algorithm. We present a multi-hop routing algorithm for use in disseminating sensing data from clusterheads to a sink at the minimum energy cost subject to an end-to-end delay constraint. The results of a simulation are consistent with our theoretical analysis results and show that our proposed performs much better than similar protocols in terms of energy consumption and end-to-end delay.

A Genetic Algorithm for Network Clustering in Underwater Acoustic Sensor Networks (해양 센서 네트워크에서 네트워크 클러스터링을 위한 유전 알고리즘)

  • Jang, Kil-Woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.12
    • /
    • pp.2687-2696
    • /
    • 2011
  • A Clustering problem is one of the organizational problems to improve network lifetime and scalability in underwater acoustic sensor networks. This paper propose an algorithm to obtain an optimal clustering solution to be able to minimize a total transmission power for all deployed nodes to transmit data to the sink node through its clusterhead. In general, as the number of nodes increases, the amount of calculation for finding the solution would be too much increased. To obtain the optimal solution within a reasonable computation time, we propose a genetic algorithm to obtain the optimal solution of the cluster configuration. In order to make a search more efficient, we propose some efficient neighborhood generating operations of the genetic algorithm. We evaluate those performances through some experiments in terms of the total transmission power of nodes and the execution time of the proposed algorithm. The evaluation results show that the proposed algorithm is efficient for the cluster configuration in underwater acoustic sensor networks.

Group Dynamic Source Routing Protocol for Wireless Mobile Ad Hoc Networks (무선 이동 애드 혹 네트워크를 위한 동적 그룹 소스 라우팅 프로토콜)

  • Kwak, Woon-Yong;Oh, Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.11A
    • /
    • pp.1034-1042
    • /
    • 2008
  • It is very hard, but important to sustain path stability for a reliable communication in mobile ad hoc networks. We propose a novel source routing protocol that establishes a group path with virtual multiple paths to enable a robust communication. The entire mobile nodes form a disjoint set of clusters: Each has its clusterhead as a cluster leader and a unique cluster label to identify itself from other clusters. A group path is a sequence of cluster labels instead of nodes and the nodes with the same label collaborate to deliver packets to a node with next label on the group path. We prove by resorting to simulation that our proposed protocol outperforms the existing key routing protocols, even for a network with a high node mobility and a high traffic.

A Hierarchical Underwater Acoustic Sensor Network Architecture Utilizing AUVs' Optimal Trajectory Movements (수중 무인기의 최적 궤도 이동을 활용하는 계층적 수중 음향 센서 네트워크 구조)

  • Nguyen, Thi Tham;Yoon, Seokhoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.12
    • /
    • pp.1328-1336
    • /
    • 2012
  • Compared to terrestrial RF communications, underwater acoustic communications have several limitations such as limited bandwidth, high level of fading effects, and a large underwater propagation delay. In this paper, in order to tackle those limitations of underwater communications and to make it possible to form a large underwater monitoring systems, we propose a hierarchical underwater network architecture, which consists of underwater sensors, clusterheads, underwater/surface sink nodes, autonomous underwater vehicles (AUVs). In the proposed architecture, for the maximization of packet delivery ratio and the minimization of underwater sensor's energy consumption, a hybrid routing protocol is used. More specifically, cluster members use Tree based routing to transmit sensing data to clusterheads. AUVs on optimal trajectory movements collect the aggregated data from clusterhead and finally forward the data to the sink node. Also, in order to minimize the maximum travel distance of AUVs, an Integer Linear Programming based algorithm is employed. Performance analysis through simulations shows that the proposed architecture can achieve a higher data delivery ratio and lower energy consumption than existing routing schemes such as gradient based routing and geographical forwarding. Start after striking space key 2 times.