• Title/Summary/Keyword: clustered data

Search Result 556, Processing Time 0.04 seconds

Shore-to-sea Maritime Visible Light Communication using Color Clustered MIMO (컬러 클러스터 MIMO 기술을 적용한 해상 가시광 통신 시스템)

  • Kim, Hyeong-ji;Chung, Yeon-ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.8
    • /
    • pp.1773-1779
    • /
    • 2015
  • Shore-to-sea visible light communication using color clustered multiple-input and multiple-output (MIMO) is presented. The proposed maritime visible light communication (MVLC) offers a low-cost, high-speed wireless link for shore-to-sea maritime communications. Each color cluster is comprised of 50 red, green and blue (RGB) light emitting diodes (LEDs) and is modulated using on-off-keying (OOK). Selection combining is performed at the receiver, producing diversity effect within that color cluster. In this paper, we employ sea states (wave height, wind speed, etc.) data from both Pierson-Moskowitz and JONSWAP spectrum models under atmospheric turbulence conditions. Based on the simulation model, the maritime link quality is analysed in terms of coverage distance and bit error rate performance. The results show that the proposed system provides an efficient MVLC, while satisfying International Association of Lighthouse Authorities (IALA) requirements for maritime buoyage system and also offering sufficient illumination from high power LEDs.

Runtime Prediction Based on Workload-Aware Clustering (병렬 프로그램 로그 군집화 기반 작업 실행 시간 예측모형 연구)

  • Kim, Eunhye;Park, Ju-Won
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.3
    • /
    • pp.56-63
    • /
    • 2015
  • Several fields of science have demanded large-scale workflow support, which requires thousands of CPU cores or more. In order to support such large-scale scientific workflows, high capacity parallel systems such as supercomputers are widely used. In order to increase the utilization of these systems, most schedulers use backfilling policy: Small jobs are moved ahead to fill in holes in the schedule when large jobs do not delay. Since an estimate of the runtime is necessary for backfilling, most parallel systems use user's estimated runtime. However, it is found to be extremely inaccurate because users overestimate their jobs. Therefore, in this paper, we propose a novel system for the runtime prediction based on workload-aware clustering with the goal of improving prediction performance. The proposed method for runtime prediction of parallel applications consists of three main phases. First, a feature selection based on factor analysis is performed to identify important input features. Then, it performs a clustering analysis of history data based on self-organizing map which is followed by hierarchical clustering for finding the clustering boundaries from the weight vectors. Finally, prediction models are constructed using support vector regression with the clustered workload data. Multiple prediction models for each clustered data pattern can reduce the error rate compared with a single model for the whole data pattern. In the experiments, we use workload logs on parallel systems (i.e., iPSC, LANL-CM5, SDSC-Par95, SDSC-Par96, and CTC-SP2) to evaluate the effectiveness of our approach. Comparing with other techniques, experimental results show that the proposed method improves the accuracy up to 69.08%.

Development of ensemble machine learning model considering the characteristics of input variables and the interpretation of model performance using explainable artificial intelligence (수질자료의 특성을 고려한 앙상블 머신러닝 모형 구축 및 설명가능한 인공지능을 이용한 모형결과 해석에 대한 연구)

  • Park, Jungsu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.36 no.4
    • /
    • pp.239-248
    • /
    • 2022
  • The prediction of algal bloom is an important field of study in algal bloom management, and chlorophyll-a concentration(Chl-a) is commonly used to represent the status of algal bloom. In, recent years advanced machine learning algorithms are increasingly used for the prediction of algal bloom. In this study, XGBoost(XGB), an ensemble machine learning algorithm, was used to develop a model to predict Chl-a in a reservoir. The daily observation of water quality data and climate data was used for the training and testing of the model. In the first step of the study, the input variables were clustered into two groups(low and high value groups) based on the observed value of water temperature(TEMP), total organic carbon concentration(TOC), total nitrogen concentration(TN) and total phosphorus concentration(TP). For each of the four water quality items, two XGB models were developed using only the data in each clustered group(Model 1). The results were compared to the prediction of an XGB model developed by using the entire data before clustering(Model 2). The model performance was evaluated using three indices including root mean squared error-observation standard deviation ratio(RSR). The model performance was improved using Model 1 for TEMP, TN, TP as the RSR of each model was 0.503, 0.477 and 0.493, respectively, while the RSR of Model 2 was 0.521. On the other hand, Model 2 shows better performance than Model 1 for TOC, where the RSR was 0.532. Explainable artificial intelligence(XAI) is an ongoing field of research in machine learning study. Shapley value analysis, a novel XAI algorithm, was also used for the quantitative interpretation of the XGB model performance developed in this study.

An SVD-Based Approach for Generating High-Dimensional Data and Query Sets (SVD를 기반으로 한 고차원 데이터 및 질의 집합의 생성)

  • 김상욱
    • The Journal of Information Technology and Database
    • /
    • v.8 no.2
    • /
    • pp.91-101
    • /
    • 2001
  • Previous research efforts on performance evaluation of multidimensional indexes typically have used synthetic data sets distributed uniformly or normally over multidimensional space. However, recent research research result has shown that these hinds of data sets hardly reflect the characteristics of multimedia database applications. In this paper, we discuss issues on generating high dimensional data and query sets for resolving the problem. We first identify the features of the data and query sets that are appropriate for fairly evaluating performances of multidimensional indexes, and then propose HDDQ_Gen(High-Dimensional Data and Query Generator) that satisfies such features. HDDQ_Gen supports the following features : (1) clustered distributions, (2) various object distributions in each cluster, (3) various cluster distributions, (4) various correlations among different dimensions, (5) query distributions depending on data distributions. Using these features, users are able to control tile distribution characteristics of data and query sets. Our contribution is fairly important in that HDDQ_Gen provides the benchmark environment evaluating multidimensional indexes correctly.

  • PDF

QCanvas: An Advanced Tool for Data Clustering and Visualization of Genomics Data

  • Kim, Nayoung;Park, Herin;He, Ningning;Lee, Hyeon Young;Yoon, Sukjoon
    • Genomics & Informatics
    • /
    • v.10 no.4
    • /
    • pp.263-265
    • /
    • 2012
  • We developed a user-friendly, interactive program to simultaneously cluster and visualize omics data, such as DNA and protein array profiles. This program provides diverse algorithms for the hierarchical clustering of two-dimensional data. The clustering results can be interactively visualized and optimized on a heatmap. The present tool does not require any prior knowledge of scripting languages to carry out the data clustering and visualization. Furthermore, the heatmaps allow the selective display of data points satisfying user-defined criteria. For example, a clustered heatmap of experimental values can be differentially visualized based on statistical values, such as p-values. Including diverse menu-based display options, QCanvas provides a convenient graphical user interface for pattern analysis and visualization with high-quality graphics.

Spatial Cluster Analysis for Earthquake on the Korean Peninsula

  • Kang, Chang-Wan;Moon, Sung-Ho;Cho, Jang-Sik;Lee, Jeong-Hyeong;Choi, Seung-Bae;Beum, Soo-Gyun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.4
    • /
    • pp.1141-1150
    • /
    • 2006
  • In this study, we performed spatial cluster analysis which considered spatial information using earthquake data for Korean peninsula occurred on 1978 year to 2005 year. Also, we look into how to be clustered for regions using earthquake magnitude and frequency based on spatial scan statistic. And, on the basis of the results, we constructed earthquake map by earthquake outbreak risk and gave a possible explanation for the results of spatial cluster analysis.

  • PDF

Model of dynamic clustering-based energy-efficient data filtering for mobile RFID networks

  • Vo, Viet Minh Nhat;Le, Van Hoa
    • ETRI Journal
    • /
    • v.43 no.3
    • /
    • pp.427-435
    • /
    • 2021
  • Data filtering is an essential task for improving the energy efficiency of radiofrequency identification (RFID) networks. Among various energy-efficient approaches, clustering-based data filtering is considered to be the most effective solution because data from cluster members can be filtered at cluster heads before being sent to base stations. However, this approach quickly depletes the energy of cluster heads. Furthermore, most previous studies have assumed that readers are fixed and interrogate mobile tags in a workspace. However, there are several applications in which readers are mobile and interrogate fixed tags in a specific area. This article proposes a model for dynamic clustering-based data filtering (DCDF) in mobile RFID networks, where mobile readers are re-clustered periodically and the cluster head role is rotated among the members of each cluster. Simulation results show that DCDF is effective in terms of balancing energy consumption among readers and prolonging the lifetime of the mobile RFID networks.

GC-Tree: A Hierarchical Index Structure for Image Databases (GC-트리 : 이미지 데이타베이스를 위한 계층 색인 구조)

  • 차광호
    • Journal of KIISE:Databases
    • /
    • v.31 no.1
    • /
    • pp.13-22
    • /
    • 2004
  • With the proliferation of multimedia data, there is an increasing need to support the indexing and retrieval of high-dimensional image data. Although there have been many efforts, the performance of existing multidimensional indexing methods is not satisfactory in high dimensions. Thus the dimensionality reduction and the approximate solution methods were tried to deal with the so-called dimensionality curse. But these methods are inevitably accompanied by the loss of precision of query results. Therefore, recently, the vector approximation-based methods such as the VA- file and the LPC-file were developed to preserve the precision of query results. However, the performance of the vector approximation-based methods depend largely on the size of the approximation file and they lose the advantages of the multidimensional indexing methods that prune much search space. In this paper, we propose a new index structure called the GC-tree for efficient similarity search in image databases. The GC-tree is based on a special subspace partitioning strategy which is optimized for clustered high-dimensional images. It adaptively partitions the data space based on a density function and dynamically constructs an index structure. The resultant index structure adapts well to the strongly clustered distribution of high-dimensional images.

Prediction and discrimination of taxonomic relationship within Orostachys species using FT-IR spectroscopy combined by multivariate analysis (FT-IR 스펙트럼 데이터의 다변량 통계분석 기법을 이용한 바위솔속 식물의 분류학적 유연관계 예측 및 판별)

  • Kwon, Yong-Kook;Kim, Suk-Weon;Seo, Jung-Min;Woo, Tae-Ha;Liu, Jang-Ryol
    • Journal of Plant Biotechnology
    • /
    • v.38 no.1
    • /
    • pp.9-14
    • /
    • 2011
  • To determine whether pattern recognition based on metabolite fingerprinting for whole cell extracts can be used to discriminate cultivars metabolically, leaves of nine commercial Orostachys plants were subjected to Fourier transform infrared spectroscopy (FT-IR). FT-IR spectral data from leaves were analyzed by principal component analysis (PCA) and Partial least square discriminant analysis (PLS-DA). The dendrogram based on hierarchical clustering analysis of these PLS-DA data separated the nine Orostachys species into five major groups. The first group consisted of O. iwarenge 'Yimge', 'Jeju', 'Jeongsun' and O. margaritifolius 'Jinju' whereas in the second group, 'Sacheon' was clustered with 'Busan,' both of which belong to O. malacophylla species. However, 'Samchuk', belong to O. malacophylla was not clustered with the other O. malacophylla species. In addition, O. minuta and O. japonica were separated to the other Orostachys plants. Thus we suggested that the hierarchical dendrogram based on PLS-DA of FT-IR spectral data from leaves represented the most probable chemotaxonomical relationship between commercial Orostachys plants. Furthermore these metabolic discrimination systems could be applied for reestablishment of precise taxonomic classification of commercial Orostachys plants.

Traffic Speed Prediction Based on Graph Neural Networks for Intelligent Transportation System (지능형 교통 시스템을 위한 Graph Neural Networks 기반 교통 속도 예측)

  • Kim, Sunghoon;Park, Jonghyuk;Choi, Yerim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.1
    • /
    • pp.70-85
    • /
    • 2021
  • Deep learning methodology, which has been actively studied in recent years, has improved the performance of artificial intelligence. Accordingly, systems utilizing deep learning have been proposed in various industries. In traffic systems, spatio-temporal graph modeling using GNN was found to be effective in predicting traffic speed. Still, it has a disadvantage that the model is trained inefficiently due to the memory bottleneck. Therefore, in this study, the road network is clustered through the graph clustering algorithm to reduce memory bottlenecks and simultaneously achieve superior performance. In order to verify the proposed method, the similarity of road speed distribution was measured using Jensen-Shannon divergence based on the analysis result of Incheon UTIC data. Then, the road network was clustered by spectrum clustering based on the measured similarity. As a result of the experiments, it was found that when the road network was divided into seven networks, the memory bottleneck was alleviated while recording the best performance compared to the baselines with MAE of 5.52km/h.