• Title/Summary/Keyword: cluster tree WSN

Search Result 14, Processing Time 0.026 seconds

An EIBS Algorithm for Wireless Sensor Network with Life Time Prolongation (수명 연장 기능의 무선 센서 네트워크용 EIBS 알고리즘)

  • Bae, Shi-Kyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.9
    • /
    • pp.65-73
    • /
    • 2014
  • Since Time synchronization is also critical in Wireless Sensor Networks (WSN) like other networks, a time synchronization protocol for WSN called IBS(Indirect-Broadcast Synchronization) has been already proposed in 2012. As IBS operates in cluster tree topology, network lifetime may be mainly shortened by cluster head node[s], which usually consumes more power than cluster member (i.e. non-cluster head) nodes. In this paper, I propose enhanced version of IBS (called EIBS) which saves overall energy and prolongs network lifetime by re-constructing partial cluster tree locally. Compared with other tree construction approaches, this tree reconstruction algorithm is not only simpler, but also more efficient in the light of overall power consumption and network lifetime.

Tree-Based Clustering Protocol for Energy Efficient Wireless Sensor Networks (에너지 효율적 무선 센서 네트워크를 위한 트리 기반 클러스터링 프로토콜)

  • Kim, Kyung-Tae;Youn, Hee-Yong
    • The KIPS Transactions:PartC
    • /
    • v.17C no.1
    • /
    • pp.69-80
    • /
    • 2010
  • Wireless sensor networks (WSN) consisting of a large number of sensors aim to gather data in a variety of environments and are being used and applied to many different fields. The sensor nodes composing a sensor network operate on battery of limited power and as a result, high energy efficiency and long network lifetime are major goals of research in the WSN. In this paper we propose a novel tree-based clustering approach for energy efficient wireless sensor networks. The proposed scheme forms the cluster and the nodes in a cluster construct a tree with the root of the cluster-head., The height of the tree is the distance of the member nodes to the cluster-head. Computer simulation shows that the proposed scheme enhances energy efficiency and balances the energy consumption among the nodes, and thus significantly extends the network lifetime compared to the existing schemes such as LEACH, PEGASIS, and TREEPSI.

Multi-Channel Time Division Scheduling for Beacon Frame Collision Avoidance in Cluster-tree Wireless Sensor Networks (클러스트-트리 무선센서네트워크에서 비콘 프레임 충돌 회피를 위한 멀티채널 시분할 스케줄링)

  • Kim, Dongwon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.3
    • /
    • pp.107-114
    • /
    • 2017
  • In beacon-enabled mode, beacon collision is a significant problem for the scalability of cluster-tree wireless sensor networks. In this paper, multi-channel time division scheduling (MCTS) is proposed to prevent beacon collisions and provide scalability. A coordinator broadcasts a beacon frame, including information on allocated channels and time-slots, and a new node determines its own channel and time-slot. The performance of the proposed method is evaluated by comparing the proposed approach with a typical ZigBee. MCTS prevents beacon collisions in cluster-tree wireless sensor networks. It enables large-scale wireless sensor networks based on a cluster tree to be scalable and effectively constructed.

Study of Cluster Tree Routing Protocols (클러스터 트리 라우팅 프로토콜 연구)

  • Cho, Moo-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.8
    • /
    • pp.138-143
    • /
    • 2005
  • A hierarchical tree structure of clusters has advantages for the network design due to its scalability and simple routing protocol. In this paper, the cluster tree routing protocol is studied for the wireless sensor network. From the numerical analysis results, the data aggregation in the intermediate nodes reduces the number of communication message and saves the energy of sensor nodes, but it may result in increased data traffic latency. And also the selection of cluster head can increase the relaying hops very high.

An Energy Efficient Query Processing Mechanism using Cache Filtering in Cluster-based Wireless Sensor Networks (클러스터 기반 WSN에서 캐시 필터링을 이용한 에너지 효율적인 질의처리 기법)

  • Lee, Kwang-Won;Hwang, Yoon-Cheol;Oh, Ryum-Duck
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.8
    • /
    • pp.149-156
    • /
    • 2010
  • As following the development of the USN technology, sensor node used in sensor network has capability of quick data process and storage to support efficient network configuration is enabled. In addition, tree-based structure was transformed to cluster in the construction of sensor network. However, query processing based on existing tree structure could be inefficient under the cluster-based network. In this paper, we suggest energy efficient query processing mechanism using filtering through data attribute classification in cluster-based sensor network. The suggestion mechanism use advantage of cluster-based network so reduce energy of query processing and designed more intelligent query dissemination. And, we prove excellence of energy efficient side with MATLab.

Energy Efficient Clustering Scheme for Mobile Wireless Sensor Network (이동 무선 센서 네트워크에서의 에너지 효율적인 클러스터링 기법)

  • Lee, Eun-Hee;Kim, Hyun-Duk;Choi, Won-Ik;Chae, Jin-Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.4A
    • /
    • pp.388-398
    • /
    • 2011
  • In this paper, we introduce an EMSP(Efficient Mobility Support Protocol) for mobile sensor network with mobility-aware. We propose virtual cluster and node split scheme considering movements of mobile nodes. The existing M-LEACH protocol suffers from communication cost spent on JOIN request information during invitation phase. To address this issue, the large boundary of the cluster in LUR-tree can reduce superfluous update cost. In addition to the expansion of the cluster, the proposed approach exploits node split algorithms used in R-tree in order to uniformly form a cluster. The simulated results show that energy-consumption has less up to about 40% than LEACH-C and 8% than M-LEACH protocol. Finally, we show that the proposed scheme outperforms those of other in terms of lifetime of sensor fields and scalability in wireless sensor network.

Inter-Process Correlation Model based Hybrid Framework for Fault Diagnosis in Wireless Sensor Networks

  • Zafar, Amna;Akbar, Ali Hammad;Akram, Beenish Ayesha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.536-564
    • /
    • 2019
  • Soft faults are inherent in wireless sensor networks (WSNs) due to external and internal errors. The failure of processes in a protocol stack are caused by errors on various layers. In this work, impact of errors and channel misbehavior on process execution is investigated to provide an error classification mechanism. Considering implementation of WSN protocol stack, inter-process correlations of stacked and peer layer processes are modeled. The proposed model is realized through local and global decision trees for fault diagnosis. A hybrid framework is proposed to implement local decision tree on sensor nodes and global decision tree on diagnostic cluster head. Local decision tree is employed to diagnose critical failures due to errors in stacked processes at node level. Global decision tree, diagnoses critical failures due to errors in peer layer processes at network level. The proposed model has been analyzed using fault tree analysis. The framework implementation has been done in Castalia. Simulation results validate the inter-process correlation model-based fault diagnosis. The hybrid framework distributes processing load on sensor nodes and diagnostic cluster head in a decentralized way, reducing communication overhead.

Data Dissemination in Wireless Sensor Networks with Instantly Decodable Network Coding

  • Gou, Liang;Zhang, Gengxin;Bian, Dongming;Zhang, Wei;Xie, Zhidong
    • Journal of Communications and Networks
    • /
    • v.18 no.5
    • /
    • pp.846-856
    • /
    • 2016
  • Wireless sensor networks (WSNs) are widely applied in monitoring and control of environment parameters. It is sometimes necessary to disseminate data through wireless links after they are deployed in order to adjust configuration parameters of sensors or distribute management commands and queries to sensors. Several approaches have been proposed recently for data dissemination in WSNs. However, none of these approaches achieves both high efficiency and low complexity simultaneously. To address this problem, cluster-tree based network architecture, which divides a WSN into hierarchies and clusters is proposed. Upon this architecture, data is delivered from base station to all sensors in clusters hierarchy by hierarchy. In each cluster, father broadcasts data to all his children with instantly decodable network coding (IDNC), and a novel scheme targeting to maximize total transmission gain (MTTG) is proposed. This scheme employs a new packet scheduling algorithm to select IDNC packets, which uses weight status feedback matrix (WSFM) directly. Analysis and simulation results indicate that the transmission efficiency approximate to the best existing approach maximum weight clique, but with much lower computational overhead. Hence, the energy efficiency achieves both in data transmission and processing.

Energy Efficiency Routing Algorithm for Vessel Ubiquitous Sensor Network Environments (선박 USN에서 에너지 효율성을 위한 라우팅 알고리즘)

  • Choi, Myeong-Soo;Pyo, Se-Jun;Lee, Jin-Seok;Yoon, Seok-Ho;Lee, Seong-Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.5B
    • /
    • pp.557-565
    • /
    • 2011
  • In this paper, we assume that sensor nodes organize the multi-hop networks, are fixed, and operate as full function devices(FFD). The wireless sensor network(WSN) only consists of mobile nodes without the assistance from the fixed infrastructure, which increases the flexibility of the network. However, it is difficult to perform routing in the WSN, since sensor nodes freely join in and drop out of the network, and some sensor nodes have very low power. We propose the algorithm combining routing schemes based on the bitmap and cluster methods in this paper. Through computer simulations, we show the validity of the proposed algorithm.

Teen Based Secure Group Communication Scheme for Wireless Sensor Networks (무선 센서네트워크를 위한 TEEN 기반의 안전한 그룹통신 기법)

  • Seo, Il-Soo
    • Convergence Security Journal
    • /
    • v.9 no.2
    • /
    • pp.71-78
    • /
    • 2009
  • It is very difficult to apply previous security protocols to WSNs(Wireless Sensor Networks) directly because WNSs have resource constrained characteristics such as a low computing ability, power, and a low communication band width. In order to overcome the problem, we proposes a secure group communication scheme applicable to WSNs. The proposed scheme is a combined form of the TEEN(Threshold sensitive Energy Efficient sensor Network protocol) clustering based hierarchical routing protocol and security mechanism, and we assume that WSNs are composed of sensor nodes, cluster headers, and base stations. We use both private key and public key cryptographic algorithms to achieve an enhanced security and an efficient key management. In addition, communications among sensor nodes, cluster headers, and base stations are accomplished by a hierarchical tree architecture to reduce power consumption. Therefore, the proposed scheme in this paper is well suited for WSNs since our design can provide not only a more enhanced security but also a lower power consumption in communications.

  • PDF