• Title/Summary/Keyword: cluster heads

Search Result 134, Processing Time 0.027 seconds

Super-allocation and Cluster-based Cooperative Spectrum Sensing in Cognitive Radio Networks

  • Miah, Md. Sipon;Yu, Heejung;Rahman, Md. Mahbubur
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.10
    • /
    • pp.3302-3320
    • /
    • 2014
  • An allocation of sensing and reporting times is proposed to improve the sensing performance by scheduling them in an efficient way for cognitive radio networks with cluster-based cooperative spectrum sensing. In the conventional cooperative sensing scheme, all secondary users (SUs) detect the primary user (PU) signal to check the availability of the spectrum during a fixed sensing time slot. The sensing results from the SUs are reported to cluster heads (CHs) during the reporting time slots of the SUs and the CHs forward them to a fusion center (FC) during the reporting time slots of the CHs through the common control channels for the global decision, respectively. However, the delivery of the local decision from SUs and CHs to a CH and FC requires a time which does not contribute to the performance of spectrum sensing and system throughput. In this paper, a super-allocation technique, which merges reporting time slots of SUs and CHs to sensing time slots of SUs by re-scheduling the reporting time slots, has been proposed to sense the spectrum more accurately. In this regard, SUs in each cluster can obtain a longer sensing duration depending on their reporting order and their clusters except for the first SU belonged to the first cluster. The proposed scheme, therefore, can achieve better sensing performance under -28 dB to -10 dB environments and will thus reduce reporting overhead.

Clustering Algorithm Considering Sensor Node Distribution in Wireless Sensor Networks

  • Yu, Boseon;Choi, Wonik;Lee, Taikjin;Kim, Hyunduk
    • Journal of Information Processing Systems
    • /
    • v.14 no.4
    • /
    • pp.926-940
    • /
    • 2018
  • In clustering-based approaches, cluster heads closer to the sink are usually burdened with much more relay traffic and thus, tend to die early. To address this problem, distance-aware clustering approaches, such as energy-efficient unequal clustering (EEUC), that adjust the cluster size according to the distance between the sink and each cluster head have been proposed. However, the network lifetime of such approaches is highly dependent on the distribution of the sensor nodes, because, in randomly distributed sensor networks, the approaches do not guarantee that the cluster energy consumption will be proportional to the cluster size. To address this problem, we propose a novel approach called CACD (Clustering Algorithm Considering node Distribution), which is not only distance-aware but also node density-aware approach. In CACD, clusters are allowed to have limited member nodes, which are determined by the distance between the sink and the cluster head. Simulation results show that CACD is 20%-50% more energy-efficient than previous work under various operational conditions considering the network lifetime.

Fuzzy Logic Approach to Zone-Based Stable Cluster Head Election Protocol-Enhanced for Wireless Sensor Networks

  • Mary, S.A. Sahaaya Arul;Gnanadurai, Jasmine Beulah
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1692-1711
    • /
    • 2016
  • Energy is a scarce resource in wireless sensor networks (WSNs). A variety of clustering protocols for WSNs, such as the zone-based stable election protocol-enhanced (ZSEP-E), have been developed for energy optimization. The ZSEP-E is a heterogeneous zone-based clustering protocol that focuses on unbalanced energy consumption with parallel formation of clusters in zones and election of cluster heads (CHs). Most ZSEP-E research has assumed probabilistic election of CHs in the zones by considering the maximum residual energy of nodes. However, studies of the diverse CH election parameters are lacking. We investigated the performance of the ZSEP-E in such scenarios using a fuzzy logic approach based on three descriptors, i.e., energy, density, and the distance from the node to the base station. We proposed an efficient ZSEP-E scheme to adapt and elect CHs in zones using fuzzy variables and evaluated its performance for different energy levels in the zones.

A Calculation Method of Closeness Centrality for High Density Wireless Sensor Networks

  • Dehkanov, Shuhrat;Kim, Young-Rag;Lee, Bok-Man;Kim, Chong-Gun
    • 한국정보컨버전스학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.43-46
    • /
    • 2008
  • Centrality has been actively studied in network analysis field. In this paper we show a calculation method of closeness centrality for WSN. Since nodes in a sensor network are very scarce in energy and computation capability the calculation of the closeness is done in two tiers by dividing network into clusters. In first step closeness centrality for cluster heads is calculated. In the second step closeness of member nodes of the chosen cluster is computed in respect to that cluster itself.

  • PDF

An Energy Efficient Cluster Formation and Maintenance Scheme for Wireless Sensor Networks

  • Hosen, A.S.M. Sanwar;Kim, Seung-Hae;Cho, Gi-Hwan
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.3
    • /
    • pp.276-283
    • /
    • 2012
  • Nowadays, wireless sensor networks (WSNs) comprise a tremendously growing infrastructure for monitoring the physical or environmental conditions of objects. WSNs pose challenges to mitigating energy dissipation by constructing a reliable and energy saving network. In this paper, we propose a novel network construction and routing method by defining three different duties for sensor nodes, that is, node gateways, cluster heads, and cluster members, and then by applying a hierarchical structure from the sink to the normal sensing nodes. This method provides an efficient rationale to support the maximum coverage, to recover missing data with node mobility, and to reduce overall energy dissipation. All this should lengthen the lifetime of the network significantly.

An Efficient Clustering Mechanism for WSN (무선 센서 네트워크를 위한 효율적인 클러스터링 기법)

  • Lee, Jinwoo;Mohammad, Baniata;Hong, Jiman
    • Smart Media Journal
    • /
    • v.6 no.4
    • /
    • pp.24-31
    • /
    • 2017
  • In wireless sensor networks, sensor nodes are deployed in a remote, harsh environment. When the power of the sensor node is consumed in such a network, the sensor nodes become useless together with the deterioration of the quality and performance of the sensor network which may save human life. Although many clustering protocols have been proposed to improve the energy consumption and extend the life of the sensor network, most of the previous studies have shown that the overhead of the cluster head is quite large. It is important to design a routing protocol that minimizes the energy consumption of each node and maximizes the network lifetime because of the power limitations of the sensor nodes and the overhead of the cluster heads. Therefore, in this paper, we propose an efficient clustering scheme that reduces the burden of cluster heads, minimizes energy consumption, and uses algorithms that maximize network lifetime. Simulation results show that the proposed clustering scheme improves the energy balance and prolongs the network life when compared with similar techniques.

DL-LEACH: Hierarchical Dual-Hop Routing Protocol for Wireless Sensor Network (DL-LEACH : 무선 센서 네트워크를 위한 계층형 멀티 홉 라우팅 프로토콜)

  • Lee, Chang-Hee;Lee, Jong-Yong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.5
    • /
    • pp.139-145
    • /
    • 2015
  • This paper proposes to increase the node energy effienciecy, which rapidly drops during the transmission of LEACH (Low Energy Adaptive Clustering Hierachy), using the method of DL-LEACH (Dual-hop Layered LEACH). By introducing dual-hop method in the data transmission, the proposed single-hop method for short-range transmission and multi-hop transmission method between the cluster heads for remote transmission was introduce. By introducing a partial multi-hop method in the data transmission, a single-hop method for short range transmission method between the cluster heads for remote transmission was introduces. In the proposed DL-LEACH, the energy consumption of cluster head for remote transmission reduces and increases the energy efficiency of sensor node by reducing the transmission distance and simplifying the transmission routine for short-range transmission. As compared the general LEACH, it was adapted to a wider sensor field.

Position-Based Cluster Routing Protocol for Wireless Microsensor Networks

  • Kim Dong-hwan;Lee Ho-seung;Jin Jung-woo;Son Jae-min;Han Ki-jun
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.330-333
    • /
    • 2004
  • Microsensor nodes is energy limited in sensor networks. If nodes had been stop in working, sensor network can't acquire sensing data in that area as well as routing path though the sensor can't be available. So, it's important to maximize the life of network in sensor network. In this paper, we look at communication protocol, which is modified by LEACH(Low-Energy Adaptive Clustering Hierarchy). We extend LEACH's stochastic cluster-head selection algorithm by a Position-based Selection (PB-Leach). This method is that the sink divides the topology into several areas and cluster head is only one in an area. PB-Leach can prevent that the variance of the number of Cluster-Head is large and Cluster-Heads are concentrated in specific area. Simulation results show that PB-Leach performs better than leach by about 100 to $250\%.$

  • PDF

A Cluster-Based Energy-Efficient Routing Protocol without Location Information for Sensor Networks

  • Lee, Gil-Jae;Kong, Jong-Uk;Lee, Min-Sun;Byeon, Ok-Hwan
    • Journal of Information Processing Systems
    • /
    • v.1 no.1 s.1
    • /
    • pp.49-54
    • /
    • 2005
  • With the recent advances in Micro Electro Mechanical System (MEMS) technology, low cost and low power consumption wireless micro sensor nodes have become available. However, energy-efficient routing is one of the most important key technologies in wireless sensor networks as sensor nodes are highly energy-constrained. Therefore, many researchers have proposed routing protocols for sensor networks, especially cluster-based routing protocols, which have many advantages such as reduced control messages, bandwidth re-usability, and improved power control. Some protocols use information on the locations of sensor nodes to construct clusters efficiently. However, it is rare that all sensor nodes know their positions. In this article, we propose another cluster-based routing protocol for sensor networks. This protocol does not use information concerning the locations of sensor nodes, but uses the remaining energy of sensor networks and the desirable number of cluster heads according to the circumstances of the sensor networks. From performance simulation, we found that the proposed protocol shows better performance than the low-energy adaptive clustering hierarchy (LEACH).

A Minimum Interference Channel Assignment Algorithm for Performance Improvement of Large-Scale Wireless Mesh Networks (대규모 무선 메쉬 네트워크의 성능 향상을 위한 최소 간섭 채널 할당 알고리즘)

  • Ryu, Min-Woo;Cha, Si-Ho;Cho, Kuk-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10B
    • /
    • pp.964-972
    • /
    • 2009
  • Wireless mesh network (WMN) is emerging a future core technology to resolve many problems derived from exist wireless networks by employing multi-interface and multi-channel. Ability to utilize multiple channels in WMNs substantially increases the effective bandwidth available to wireless network nodes. However, minimum interference channel assignment algorithms are required to use the effective bandwidth in multi-channel environments. This paper proposes a cluster-based minimum interference channel assignment (MI-CA) algorithm to improve the performance of WMN. The MI-CA algorithm is consists of Inter-Cluster and Intra-Cluster Intrchannel assignment between clusters and in the internal clusters, respectively. The Inter-Cluster channel assignment assigns a barebone channel to cluster heads and border nodes based on minimum spanning tree (MST) and the Intra-Cluster channel assignment minimizes channel interference by reassigning ortasgonal channels between cluster mespann. Our simheation results show that MI-CA can improve the performance of WMNs by minimizing channel interference.