• Title/Summary/Keyword: cloud water

Search Result 274, Processing Time 0.029 seconds

Application of Images and Data of Satellite to a Conceptual Model for Heavy Rainfall Analysis (호우사례 분석을 위한 개념모델 구성에 위성영상과 위성자료의 활용 연구)

  • Lee, Kwang-Jae;Heo, Ki-Young;Suh, Ae-Sook;Park, Jong-Seo;Ha, Kyung-Ja
    • Atmosphere
    • /
    • v.20 no.2
    • /
    • pp.131-151
    • /
    • 2010
  • This study establishes a conceptual model to analyze heavy rainfall events in Korea using multi-functional transport satellite-1R satellite images. Three heavy rainfall episodes in two major synoptic types, such as synoptic low (SL) type and synoptic flow convergence (SC) type, are analyzed through a conceptual model procedure which proceeds on two steps: 1) conveyer belt model analysis to detect convective area, and 2) cloud top temperature analysis from black body temperature (TBB) data to distinguish convective cloud from stratiform cloud, and eventually estimate heavy rainfall area and intensity. Major synoptic patterns causing heavy rainfall are Changma, synoptic low approach, upper level low in the SL type, and upper level low, indirect effect of typhoon, convergence of tropical air in the SC type. The relationship between rainfall and TBBs in overall well resolved areas of heavy rainfall. The SC type tended to underestimate the intensity of heavy rainfall, but the analysis with the use of water vapor channel has improved the performance. The conceptual model improved a concrete utilization of images and data of satellite, as summarizing characteristics of major synoptic type causing heavy rainfall and composing an algorism to assess the area and intensity of heavy rainfall. The further assessment with various cases is required for the operational use.

GPU-based modeling and rendering techniques of 3D clouds using procedural functions (절차적 함수를 이용한 GPU기반 실시간 3D구름 모델링 및 렌더링 기법)

  • Sung, Mankyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.4
    • /
    • pp.416-422
    • /
    • 2019
  • This paper proposes a GPU-based modeling and rendering of 3D clouds using procedural functions. The formation of clouds is based on modified noise function made with fbm(Fractional Brownian Motion). Those noise values turn into densities of droplets of liquid water, which is a critical parameter for forming the three different types of clouds. At the rendering stage, the algorithm applies the ray marching technique to decide the colors of cloud using density values obtained from the noise function. In this process, all lighting attenuation and scattering are calculated by physically based manner. Once we have the clouds, they are blended on the sky, which is also rendered physically. We also make the clouds moving in the sky by the wind force. All algorithms are implemented and tested on GPU using GLSL.

Analysis of Time Series Models for Ozone Concentration at Anyang City of Gyeonggi-Do in Korea (경기도 안양시 오존농도의 시계열모형 연구)

  • Lee, Hoon-Ja
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.5
    • /
    • pp.604-612
    • /
    • 2008
  • The ozone concentration is one of the important environmental issue for measurement of the atmospheric condition of the country. This study focuses on applying the Autoregressive Error (ARE) model for analyzing the ozone data at middle part of the Gyeonggi-Do, Anyang monitoring site in Korea. In the ARE model, eight meteorological variables and four pollution variables are used as the explanatory variables. The eight meteorological variables are daily maximum temperature, wind speed, amount of cloud, global radiation, relative humidity, rainfall, dew point temperature, and water vapor pressure. The four air pollution variables are sulfur dioxide $(SO_2)$, nitrogen dioxide $(NO_2)$, carbon monoxide (CO), and particulate matter 10 (PM10). The result shows that ARE models both overall and monthly data are suited for describing the oBone concentration. In the ARE model for overall ozone data, ozone concentration can be explained about 71% to by the PM10, global radiation and wind speed. Also the four types of ARE models for high level of ozone data (over 80 ppb) have been analyzed. In the best ARE model for high level of ozone data, ozone can be explained about 96% by the PM10, daliy maximum temperature, and cloud amount.

Preliminary Study on the Elemental Quantification of in Ambient Liquid Samples of Microliter Volume Using the In-air Micro-PIXE Technique

  • Ma, Chang-Jin;Lim, Cheol-Soo;Sakai, Takuro
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.1
    • /
    • pp.54-60
    • /
    • 2017
  • Quantifying the trace elements in infinitesimal ambient liquid samples (e.g., single raindrop, cloud/fog water, and the soluble fraction extracted from the particles collected for a short time) is an important task for understanding formation processes, heating/cooling rates, and their health hazards. The purpose of this study is to employ an in-air micro PIXE system for quantitative analysis of the trace elements in a thimbleful of reference liquid sample. The bag type liquid sample holder originally designed with $10{\mu}m$ thick $Mylar^{(R)}$ film retained the original shape without any film perforation and apparent peaks of film blank by the end of the analysis. As one of tasks to be solved, the homogeneity of the elemental distribution in liquid reference species was verified by the X-ray line profiles for several references. It was possible to resolve the significant peaks for whole target elements corresponding to the channel number of micro-PIXE spectrum. The calibration curves for the six target elements (Si, S, Cl, Fe, Ni, and Zn) in standard solutions were successfully plotted by concentration (ppm) and ROI of interest net counts/dose (nC).

The Development of the Solar-Meteorological Resources Map based on Satellite data on Korean Peninsula (위성자료기반의 한반도 태양기상자원지도 개발)

  • Jee, Joon-Bum;Choi, Young-Jean;Lee, Kyu-Tae
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.342-347
    • /
    • 2011
  • Solar energy is attenuated by absorbing gases (ozone, aerosol, water vapour and mixed gas) and cloud in the atmosphere. And these are measured with solar instruments (pyranometer, phyheliometer). However, solar energy is insufficient to represent detailed energy distribution, because the distributions of instruments are limited on spatial. If input data of solar radiation model is accurate, the solar energy reaches at the surface can be calculated accurately. Recently a variety of satellite measurements are available to TERA/AQUA (MODIS), AURA (OMI) and geostationary satellites (GMS-5, GOES-9, MTSAT-1R, MTSAT-2 and COMS). Input data of solar radiation model can be used aerosols and surface albedo of MODIS, total ozone amount of OMI and cloud fraction of meteorological geostationary satellite. The solar energy reaches to the surface is calculated hourly by solar radiation model and those are accumulated monthly and annual. And these results are verified the spatial distribution and validated with ground observations.

  • PDF

Retrieval of satellite cloud drift winds with GMS-5 and inter comparison with radiosonde data over the Korea

  • Suh, Ae-Sook;Lee, Yong-Seob;Ryu, Seung-Ah
    • Proceedings of the KSRS Conference
    • /
    • 2000.04a
    • /
    • pp.49-54
    • /
    • 2000
  • Conventional methods for measuring winds provide wind velocity observations over limited area and time period. The use of satellite imagery for measuring wind velocity overcomes some of these limitations by providing wide area and near condinuous coverage. And its accurate depiction is essential for operational weather forecasting and for initialization of NWP models. GMS-5 provides full disk images at hourly intervals. At four times each day - 0500, 1100, 1700, 2300 hours UTC-a series of three images is received, separated by thirty minutes, centered at the four times. The current wind system generates winds from sets of 3 infrared(IR) images, separated by an hour, four times a day. It also produces visible(VIS) and water vapor(WV) image-based winds from half-hourly imagery four times a day. The derivation of wind from satellite imagery involves the identification of suitable cloud targets. tracking the targets on sequential images, associating a pressure height with the derived wind vector, and quality control. The aim of this research is to incorporate imagery from other available spectral channels and examine the error characteristics of winds derived from these images.

  • PDF

A Proposal for Improving the Measurement and Management of Unit Water Content in In-Situ Concrete (현장 타설 콘크리트의 단위수량 측정 및 관리 개선 방안 제시)

  • Yun, Ja-yeon;Jang, Hyo-Jun;Lee, Taegyu;Choi, Hyeonggil
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.3
    • /
    • pp.319-329
    • /
    • 2024
  • This study examined domestic and international regulations concerning concrete unit weight, along with an evaluation of unit weight in concrete poured on construction sites. Fluctuations in unit weight were observed to correlate with concrete quality issues such as material separation, bleeding, and latency. A word cloud analysis, centered on the concept of concrete quality, further highlighted the significant influence of unit weight. Comparative analysis between Korea and Japan revealed few substantial differences in unit weight management and measurement techniques. However, calculation of concrete unit weight at delivery, using the unit volume mass method, indicated considerable variability among random on-site samples. Notably, the unit weight often exceeded the recommended standard. These findings emphasize the necessity for strict adherence to unit weight standards by all stakeholders involved in concrete production and construction, including ready-mix concrete (REMICON) producers, construction firms, and inspectors. To ensure consistent quality of cast concrete on-site, the establishment of a more comprehensive and practical system is recommended, incorporating measures such as on-site inspections.

Water and Methanol Maser Observations toward NGC 2024 FIR 6 with KVN

  • Choi, Minho;Kang, Miju;Byun, Do-Young;Lee, Jeong-Eun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.103.2-103.2
    • /
    • 2012
  • NGC 2024 FIR 6 is a star formation site in Orion and may contain a hypercompact H II region, FIR 6c, and a low-mass protostar, FIR 6n. The FIR 6 region was observed in the water maser line at 22 GHz and the methanol class I maser lines at 44, 95, and 133 GHz, using KVN in the single-dish telescope mode. The water maser spectra displayed several velocity components and month-scale time variabilities. Most of the velocity components may be associated with FIR 6n while one component was associated with FIR 4, another young stellar object in the 22 GHz beam. A typical life time of the water-maser velocity-components is about 8 months. The components showed velocity fluctuations with a typical drift rate of about 0.01 km/s/day. The methanol class I masers were detected toward FIR 6. The methanol emission is confined within a narrow range around the systemic velocity of the FIR 6 cloud core. The methanol masers did not show a detectable time-variability. The methanol masers suggest the existence of shocks driven by either the expanding H II region of FIR 6c or the outflow of FIR 6n.

  • PDF

Water Depth and Riverbed Surveying Using Airborne Bathymetric LiDAR System - A Case Study at the Gokgyo River (항공수심라이다를 활용한 하천 수심 및 하상 측량에 관한 연구 - 곡교천 사례를 중심으로)

  • Lee, Jae Bin;Kim, Hye Jin;Kim, Jae Hak;Wie, Gwang Jae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.4
    • /
    • pp.235-243
    • /
    • 2021
  • River surveying is conducted to acquire basic geographic data for river master plans and various river maintenance, and it is also used to predict changes after river maintenance construction. ABL (Airborne Bathymetric LiDAR) system is a cutting-edge surveying technology that can simultaneously observe the water surface and river bed using a green laser, and has many advantages in river surveying. In order to use the ABL data for river surveying, it is prerequisite step to segment and extract the water surface and river bed points from the original point cloud data. In this study, point cloud segmentation was performed by applying the ground filtering technique, ATIN (Adaptive Triangular Irregular Network) to the ABL data and then, the water surface and riverbed point clouds were extracted sequentially. In the Gokgyocheon river area, Chungcheongnam-do, the experiment was conducted with the dataset obtained using the Leica Chiroptera 4X sensor. As a result of the study, the overall classification accuracy for the water surface and riverbed was 88.8%, and the Kappa coefficient was 0.825, confirming that the ABL data can be effectively used for river surveying.

Microwave Radiometer for Space Science and DREAM Mission of STSAT-2

  • Kim, Y.H.
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.31.4-32
    • /
    • 2008
  • The microwave instruments are used many areas of the space remote sensing and space science applications. The imaging radar of synthetic aperture radar (SAR) is well known microwave radar sensor for earth surface and ocean research. Unlike radar, microwave radiometer is passive instrument and it measures the emission energy of target, i.e. brightness temperature BT, from earth surface and atmosphere. From measured BT, the geophysical data like cloud liquid water, water vapor, sea surface temperature, surface permittivity can be retrieved. In this paper, the radiometer characteristics, system configuration and principle of BT measurement are described. Also the radiometer instruments TRMM, GPM, SMOS for earth climate, and ocean salinity research are introduce. As first korean microwave payload on STSAT-2, the DREAM (Dual-channels Radiometer for Earth and Atmosphere Monitoring) is described the mission, system configuration and operation plan for life time of two years. The main issues of DREAM unlike other spaceborne radiometers, will be addressed. The calibration is the one of main issues of DREAM mission and how it contribute on the space borne radiometer. In conclusion, the radiometer instrument to space science application will be considered.

  • PDF