• Title/Summary/Keyword: cloud theory

Search Result 99, Processing Time 0.028 seconds

Unveiling the Influence of Corporate Organizational Inertia on Cloud Computing Transition Intentions: An Empirical Inquiry (기업내 조직 관성이 클라우드 컴퓨팅 전환 의도에 미치는 영향에 관한 실증적 연구)

  • Jae Won Kang;Sangyoon Yi
    • Journal of Information Technology Services
    • /
    • v.23 no.3
    • /
    • pp.17-37
    • /
    • 2024
  • This study explores the tendency of corporations and organizations to continue with their current processes despite having incentives for better Information Technology (IT) innovation or transition. In this context, the study argues that organizations may struggle with 'outsourcing inertia,' a well-known concept referring to an organization's deficient adaptability to environmental changes, particularly defined here as the organization's slow adaptation to changes in outsourcing levels. To verify this, the study analyzes how key variables identified from existing IT Outsourcing (ITO) decision-making research and recent studies on cloud computing transitions actually affect a firm's transition intentions. In the process, this study investigates the moderating effect of a firm's outsourcing inertia, utilizing the Technology-Organization-Environment (TOE) framework and the Push-Pull-Mooring (PPM) model based on migration theory to propose a research model. The study aims to contribute to finding strategic approaches necessary for facilitating IT innovation and transition by understanding the impact of outsourcing inertia on the decision-making process related to IT outsourcing. It is important to note that the majority of domestic conglomerates own IT subsidiaries, which significantly influence the process of transitioning to cloud computing. Nevertheless, research on the impact of IT subsidiaries on cloud computing transition is relatively scarce. Based on this background, this study proposes that IT subsidiaries within domestic conglomerates can act as a significant mooring factor of organizational inertia in the decision-making process for adopting cloud computing. Through this, the study seeks to provide strategic insights for overcoming organizational inertia faced by IT subsidiaries during the cloud computing transition process.

STUDY OF THE MARINE CLOUD STRUCTURE WITH AQUA AMSR-E

  • Shoom, Mariya Yu.
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.1007-1010
    • /
    • 2006
  • This study investigates the spatial structure of the total cloud liquid water content Q fields over the Northwest Pacific Ocean during winter monsoon. The distributions of Q have been estimated from the brightness temperatures of the ocean - atmosphere system $T_B(f)$, where f is frequency, measured by AQUA AMSR-E in January -March 2003. Marine strati (St) and stratocumuli (Sc) are typical for winter monsoon season. They were analysed using mainly high-frequency channel at f = 36.5 GHz, vertical polarisation. $T_B$ data were accompanied by the data on near surface wind speed, air temperature and humidity from the nearest meteorological stations. Tow one-dimensional spectra were computed for downwind and crosswind sections of Q fields. The AMSR-E antenna field of view (14-8 km) and the cloud field sizes (100-1000 km) restricted the spatial scales. The results of case study Jan 31 2003 are presented. Scale-invariant spectrum is typical. In the cases of extended St levels a spectral slope equals about -1.7, conforming to classical -5/3 of turbulence theory. For Sc cases the absolute magnitude of spectral slope is rather higher, as a rule. The value is about -2. In the case when cloud streets are presented, a strait line form of spectrum is less reliable with a slope being rather lower (about -1.4).

  • PDF

A TBM tunnel collapse risk prediction model based on AHP and normal cloud model

  • Wang, Peng;Xue, Yiguo;Su, Maoxin;Qiu, Daohong;Li, Guangkun
    • Geomechanics and Engineering
    • /
    • v.30 no.5
    • /
    • pp.413-422
    • /
    • 2022
  • TBM is widely used in the construction of various underground projects in the current world, and has the unique advantages that cannot be compared with traditional excavation methods. However, due to the high cost of TBM, the damage is even greater when geological disasters such as collapse occur during excavation. At present, there is still a shortage of research on various types of risk prediction of TBM tunnel, and accurate and reliable risk prediction model is an important theoretical basis for timely risk avoidance during construction. In this paper, a prediction model is proposed to evaluate the risk level of tunnel collapse by establishing a reasonable risk index system, using analytic hierarchy process to determine the index weight, and using the normal cloud model theory. At the same time, the traditional analytic hierarchy process is improved and optimized to ensure the objectivity of the weight values of the indicators in the prediction process, and the qualitative indicators are quantified so that they can directly participate in the process of risk prediction calculation. Through the practical engineering application, the feasibility and accuracy of the method are verified, and further optimization can be analyzed and discussed.

Long-Term Container Allocation via Optimized Task Scheduling Through Deep Learning (OTS-DL) And High-Level Security

  • Muthakshi S;Mahesh K
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.4
    • /
    • pp.1258-1275
    • /
    • 2023
  • Cloud computing is a new technology that has adapted to the traditional way of service providing. Service providers are responsible for managing the allocation of resources. Selecting suitable containers and bandwidth for job scheduling has been a challenging task for the service providers. There are several existing systems that have introduced many algorithms for resource allocation. To overcome these challenges, the proposed system introduces an Optimized Task Scheduling Algorithm with Deep Learning (OTS-DL). When a job is assigned to a Cloud Service Provider (CSP), the containers are allocated automatically. The article segregates the containers as' Long-Term Container (LTC)' and 'Short-Term Container (STC)' for resource allocation. The system leverages an 'Optimized Task Scheduling Algorithm' to maximize the resource utilisation that initially inquires for micro-task and macro-task dependencies. The bottleneck task is chosen and acted upon accordingly. Further, the system initializes a 'Deep Learning' (DL) for implementing all the progressive steps of job scheduling in the cloud. Further, to overcome container attacks and errors, the system formulates a Container Convergence (Fault Tolerance) theory with high-level security. The results demonstrate that the used optimization algorithm is more effective for implementing a complete resource allocation and solving the large-scale optimization problem of resource allocation and security issues.

Publication Trends and Citation Impact of Tribology Research in India: A Scientometric Study

  • Rajendran, P.;Elango, B.;Manickaraj, J.
    • Journal of Information Science Theory and Practice
    • /
    • v.2 no.1
    • /
    • pp.22-34
    • /
    • 2014
  • This paper analyzes India's contribution to world tribology research during the period 2001-2012 based on SCOPUS records. India's global publication share, annual output, and its citation impact of Indian contribution, partner countries, leading contributors, leading institutes, and highly cited papers were analyzed. Additionally, a cloud technique is used to map frequently used single words in titles. It is observed that India ranks in the $7^{th}$ position with a global publication share of 3.83% and an annual average growth rate of 25.58% during the period 2001-2012. The citation impact of India's contribution is 6.05 which decreased from 12.74 during 2001-2006 to 4.62 during 2007-2012. 17.4% of India's total research output was published with international collaboration.

Status and Prospects of Quantum Information Communication Technologies(Q-ICT) (양자정보통신기술 현황과 전망)

  • Park, S.S.;Song, H.Y.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.2
    • /
    • pp.60-72
    • /
    • 2019
  • Commercial services providing quantum cryptographic communication are available in China and the United States of America (USA), and a commercial cloud service for quantum computing is available in the USA. This has been possible since the early stage prototypes of quantum technologies have transitioned from theory to practical applications. This has led to the development of a new industrial ecosystem so that governments are announcing plans to support further research and development, new ventures are being launched, and a market is emerging. We will discuss the technological possibilities of future developments from the early-stage achievements.

Game Based Cooperative Negotiation among Cloud Providers in a Dynamic Collaborative Cloud Services Platform (게임 이론 기반 동적 협력 클라우드 서비스 플랫폼에서의 클라우드 공급자간 협상 기법)

  • Hassan, Mohammad Mehedi;Huh, Eui-Nam
    • Journal of Internet Computing and Services
    • /
    • v.11 no.5
    • /
    • pp.105-117
    • /
    • 2010
  • In recent years, dynamic collaboration (DC) among cloud providers (CPs) is becoming an inevitable approach for the widely use of cloud computing and to realize the greatest value of it. In our previous paper, we proposed a combinatorial auction (CA) based cloud market model called CACM that enables a DC platform among different CPs. The CACM model allows any CP to dynamically collaborate with suitable partner CPs to form a group before joining an auction and thus addresses the issue of conflicts minimization that may occur when negotiating among providers. But how to determine optimal group bidding prices, how to obtain the stability condition of the group and how to distribute the winning prices/profits among the group members in the CACM model have not been studied thoroughly. In this paper, we propose to formulate the above problems of cooperative negotiation in the CACM model as a bankruptcy game which is a special type of N-person cooperative game. The stability of the group is analyzed by using the concept of the core and the amount of allocationsto each member of the group is obtained by using Shapley value. Numerical results are presented to demonstrate the behaviors of the proposed approaches.

Study on the Retrieval of Vertical Air Motion from the Surface-Based and Airborne Cloud Radar (구름레이더를 이용한 대기 공기의 연직속도 추정연구)

  • Jung, Eunsil
    • Atmosphere
    • /
    • v.29 no.1
    • /
    • pp.105-112
    • /
    • 2019
  • Measurements of vertical air motion and microphysics are essential for improving our understanding of convective clouds. In this paper, the author reviews the current research on the retrieval of vertical air motions using the cloud radar. At radar wavelengths of 3 mm (W-band radar; 94-GHz radar; cloud radar), the raindrop backscattering cross-section (${\sigma}b$) varies between successive maxima and minima as a function of the raindrop diameter (D) that are well described by Mie theory. The first Mie minimum in the backscattering cross-section occurs at D~1.68 mm, which translates to a raindrop terminal fall velocity of ${\sim}5.85m\;s^{-1}$ based on the Gunn and Kinzer relationship. Since raindrop diameters often exceed this size, the signal is captured in the radar Doppler spectrum, and thus, the location of the first Mie minimum can be used as a reference for retrieving the vertical air motion. The Mie technique is applied to radar Doppler spectra from the surface-based and airborne, upward pointing W-band radars. The contributions of aircraft motion to the vertical air motion are also described and further the first-order aircraft motion corrected equation is presented. The review also shows that the separate spectral peaks due to the cloud droplets can provide independent validation of the Mie technique retrieved vertical air motion using the cloud droplets as a tracer of vertical air motion.

A Study on Spontaneous Ignition of Hydroxy Propyl Methyl Cellulose (Hydroxy Propyl Methyl Cellulose의 자연발화에 관한 연구)

  • 최재욱;목연수;하동명
    • Fire Science and Engineering
    • /
    • v.15 no.4
    • /
    • pp.34-40
    • /
    • 2001
  • The spontaneous ignition of hydroxypropyl methyl cellulose(HPMC) was investigated at constant ambient temperature in the oven and minimum ignition temperature of dust clouds with Godbret-Creenwald Furnace respectively, In the experiments of the vessel filled with sample. the larger the vessel was the lower the spontaneous ignition temperature and ambient temperature was calculated from the Frank-Kamenetskii thermal ignition theory. The minimum ignition temperature for the dust cloud state was found under 21% oxygen concentration. At the experiment with the change of oxygen concentration, HPMC was not ignite at 10% $O_2$and so the limiting oxygen concentration was obtained at 10%.

  • PDF

Calculations of Optical Properties of Cloud Particles to Improve the Accuracy of Forward Scattering Probes for In-Situ Aircraft Cloud Measurements (항공기 구름 관측에 사용되는 전방산란 관측 기기의 정확도 향상을 위한 구름입자의 광학적 특성 계산)

  • Um, Junshik
    • Atmosphere
    • /
    • v.30 no.1
    • /
    • pp.75-89
    • /
    • 2020
  • Current in-situ airborne probes that measure the sizes of ice crystals smaller than 50 ㎛ are based on the concept that the measured intensity of light scattered by a particle in the forward and/or backward direction can be converted to particle size. The relationship between particle size and scattered light used in forward scattering probes is based on Mie theory, which assumes the refractive index of particle is known and all particles are spherical. Not only are small crystals not spherical, but also there are a wide variety of non-spherical shapes. Although it is well known that the scattering properties of non-spherical ice crystals differ from those of spherical shapes, the impacts of non-sphericity on derived in-situ particle size distributions are unknown. Thus, precise relationships between the intensity of scattered light and particle size and shape are required, as based on accurate calculations of scattering properties of ice crystals. In this study, single-scattering properties of ice crystals smaller than 50 ㎛ are calculated at a wavelength of 0.55 ㎛ using a numerically exact method (i.e., discrete dipole approximation). For these calculations, hexagonal ice crystals with varying aspect ratios are used to represent the shapes of natural small ice crystals to determine the errors caused by non-spherical ice crystals measured by forward scattering probes. It is shown that the calculated errors in sizing nonspherical ice crystals are at least 13% and 26% in forward (4~12°) and backward (168~176°) directions, respectively, and maximum errors are up to 120% and 132%.