• Title/Summary/Keyword: cloud resource management

Search Result 142, Processing Time 0.029 seconds

Intelligent Resource Management Schemes for Systems, Services, and Applications of Cloud Computing Based on Artificial Intelligence

  • Lim, JongBeom;Lee, DaeWon;Chung, Kwang-Sik;Yu, HeonChang
    • Journal of Information Processing Systems
    • /
    • v.15 no.5
    • /
    • pp.1192-1200
    • /
    • 2019
  • Recently, artificial intelligence techniques have been widely used in the computer science field, such as the Internet of Things, big data, cloud computing, and mobile computing. In particular, resource management is of utmost importance for maintaining the quality of services, service-level agreements, and the availability of the system. In this paper, we review and analyze various ways to meet the requirements of cloud resource management based on artificial intelligence. We divide cloud resource management techniques based on artificial intelligence into three categories: fog computing systems, edge-cloud systems, and intelligent cloud computing systems. The aim of the paper is to propose an intelligent resource management scheme that manages mobile resources by monitoring devices' statuses and predicting their future stability based on one of the artificial intelligence techniques. We explore how our proposed resource management scheme can be extended to various cloud-based systems.

Dynamic Service Assignment based on Proportional Ordering for the Adaptive Resource Management of Cloud Systems

  • Mateo, Romeo Mark A.;Lee, Jae-Wan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.12
    • /
    • pp.2294-2314
    • /
    • 2011
  • The key issue in providing fast and reliable access on cloud services is the effective management of resources in a cloud system. However, the high variation in cloud service access rates affects the system performance considerably when there are no default routines to handle this type of occurrence. Adaptive techniques are used in resource management to support robust systems and maintain well-balanced loads within the servers. This paper presents an adaptive resource management for cloud systems which supports the integration of intelligent methods to promote quality of service (QoS) in provisioning of cloud services. A technique of dynamically assigning cloud services to a group of cloud servers is proposed for the adaptive resource management. Initially, cloud services are collected based on the excess cloud services load and then these are deployed to the assigned cloud servers. The assignment function uses the proposed proportional ordering which efficiently assigns cloud services based on its resource consumption. The difference in resource consumption rate in all nodes is analyzed periodically which decides the execution of service assignment. Performance evaluation showed that the proposed dynamic service assignment (DSA) performed best in throughput performance compared to other resource allocation algorithms.

Challenges and Issues of Resource Allocation Techniques in Cloud Computing

  • Abid, Adnan;Manzoor, Muhammad Faraz;Farooq, Muhammad Shoaib;Farooq, Uzma;Hussain, Muzammil
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.7
    • /
    • pp.2815-2839
    • /
    • 2020
  • In a cloud computing paradigm, allocation of various virtualized ICT resources is a complex problem due to the presence of heterogeneous application (MapReduce, content delivery and networks web applications) workloads having contentious allocation requirements in terms of ICT resource capacities (resource utilization, execution time, response time, etc.). This task of resource allocation becomes more challenging due to finite available resources and increasing consumer demands. Therefore, many unique models and techniques have been proposed to allocate resources efficiently. However, there is no published research available in this domain that clearly address this research problem and provides research taxonomy for classification of resource allocation techniques including strategic, target resources, optimization, scheduling and power. Hence, the main aim of this paper is to identify open challenges faced by the cloud service provider related to allocation of resource such as servers, storage and networks in cloud computing. More than 70 articles, between year 2007 and 2020, related to resource allocation in cloud computing have been shortlisted through a structured mechanism and are reviewed under clearly defined objectives. Lastly, the evolution of research in resource allocation techniques has also been discussed along with salient future directions in this area.

Adaptive Resource Management and Provisioning in the Cloud Computing: A Survey of Definitions, Standards and Research Roadmaps

  • Keshavarzi, Amin;Haghighat, Abolfazl Toroghi;Bohlouli, Mahdi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4280-4300
    • /
    • 2017
  • The fact that cloud computing services have been proposed in recent years, organizations and individuals face with various challenges and problems such as how to migrate applications and software platforms into cloud or how to ensure security of migrated applications. This study reviews the current challenges and open issues in cloud computing, with the focus on autonomic resource management especially in federated clouds. In addition, this study provides recommendations and research roadmaps for scientific activities, as well as potential improvements in federated cloud computing. This survey study covers results achieved through 190 literatures including books, journal and conference papers, industrial reports, forums, and project reports. A solution is proposed for autonomic resource management in the federated clouds, using machine learning and statistical analysis in order to provide better and efficient resource management.

Dynamic Cloud Resource Reservation Model Based on Trust

  • Qiang, Jiao-Hong;Ning, Ding-Wan;Feng, Tian-Jun;Ping, Li-Wei
    • Journal of Information Processing Systems
    • /
    • v.14 no.2
    • /
    • pp.377-395
    • /
    • 2018
  • Aiming at the problem of service reliability in resource reservation in cloud computing environments, a model of dynamic cloud resource reservation based on trust is proposed. A domain-specific cloud management architecture is designed in which resources are divided into different management domains according to the types of service for easier management. A dynamic resource reservation mechanism (DRRM) is used to test users' reservation requests and reserve resources for users. According to user preference, several resources are chosen to be candidate resources by fuzzy cluster analysis. The fuzzy evaluation method and a two-way trust evaluation mechanism are adopted to improve the availability and credibility of the model. An analysis and simulation experiments show that this model can increase the flexibility of resource reservation and improve user satisfaction.

Data-Compression-Based Resource Management in Cloud Computing for Biology and Medicine

  • Zhu, Changming
    • Journal of Computing Science and Engineering
    • /
    • v.10 no.1
    • /
    • pp.21-31
    • /
    • 2016
  • With the application and development of biomedical techniques such as next-generation sequencing, mass spectrometry, and medical imaging, the amount of biomedical data have been growing explosively. In terms of processing such data, we face the problems surrounding big data, highly intensive computation, and high dimensionality data. Fortunately, cloud computing represents significant advantages of resource allocation, data storage, computation, and sharing and offers a solution to solve big data problems of biomedical research. In order to improve the efficiency of resource management in cloud computing, this paper proposes a clustering method and adopts Radial Basis Function in order to compress comprehensive data sets found in biology and medicine in high quality, and stores these data with resource management in cloud computing. Experiments have validated that with such a data-compression-based resource management in cloud computing, one can store large data sets from biology and medicine in fewer capacities. Furthermore, with reverse operation of the Radial Basis Function, these compressed data can be reconstructed with high accuracy.

Adaptive Resource Management Method base on ART in Cloud Computing Environment (클라우드 컴퓨팅 환경에서 빅데이터 처리를 위한 ART 기반의 적응형 자원관리 방법)

  • Cho, Kyucheol;Kim, JaeKwon
    • Journal of the Korea Society for Simulation
    • /
    • v.23 no.4
    • /
    • pp.111-119
    • /
    • 2014
  • The cloud environment need resource management method that to enable the big data issue and data analysis technology. Existing resource management uses the limited calculation method, therefore concentrated the resource bias problem. To solve this problem, the resource management requires the learning-based scheduling using resource history information. In this paper, we proposes the ART (Adaptive Resonance Theory)-based adaptive resource management. Our proposed method assigns the job to the suitable method with the resource monitoring and history management in cloud computing environment. The proposed method utilizes the unsupervised learning method. Our goal is to improve the data processing and service stability with the adaptive resource management. The propose method allow the systematic management, and utilize the available resource efficiently.

BIM Platform Resource Management for BaaS(BIM as a Service) in Distributed Cloud Computing (BaaS(BIM as a Service)를 위한 분산 클라우드 기반의 BIM 플랫폼 리소스 관리 방법 연구)

  • Son, A-Young;Shin, Jae-Young;Moon, Hyoun-Seok
    • Journal of KIBIM
    • /
    • v.10 no.3
    • /
    • pp.43-53
    • /
    • 2020
  • BIM-based Cloud platform gained popularity coupled with the convergence of Fourth Industrial Revolution technology. However, most of the previous work has not guaranteed sufficient efficiency to meet user requirements according to BIM service. Furthermore, the Cloud environment is only used as a server and it does not consider cloud characteristics. For the processing of High Capacity Data like BIM and using seamless BIM service, Resource management technology is required in the cloud environment. In this paper, to solve the problems, we propose a BIM platform for BaaS and an efficient resource allocation scheme. We also proved the efficiency of resource for the proposed scheme by using existing schemes. By doing this, the proposed scheme looks forward to accelerating the growth of the BaaS through improving the user experience and resource efficiency.

An Engine for DRA in Container Orchestration Using Machine Learning

  • Gun-Woo Kim;Seo-Yeon Gu;Seok-Jae Moon;Byung-Joon Park
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.126-133
    • /
    • 2023
  • Recent advancements in cloud service virtualization technologies have witnessed a shift from a Virtual Machine-centric approach to a container-centric paradigm, offering advantages such as faster deployment and enhanced portability. Container orchestration has emerged as a key technology for efficient management and scheduling of these containers. However, with the increasing complexity and diversity of heterogeneous workloads and service types, resource scheduling has become a challenging task. Various research endeavors are underway to address the challenges posed by diverse workloads and services. Yet, a systematic approach to container orchestration for effective cloud management has not been clearly defined. This paper proposes the DRA-Engine (Dynamic Resource Allocation Engine) for resource scheduling in container orchestration. The proposed engine comprises the Request Load Procedure, Required Resource Measurement Procedure, and Resource Provision Decision Procedure. Through these components, the DRA-Engine dynamically allocates resources according to the application's requirements, presenting a solution to the challenges of resource scheduling in container orchestration.

Task Scheduling and Resource Management Strategy for Edge Cloud Computing Using Improved Genetic Algorithm

  • Xiuye Yin;Liyong Chen
    • Journal of Information Processing Systems
    • /
    • v.19 no.4
    • /
    • pp.450-464
    • /
    • 2023
  • To address the problems of large system overhead and low timeliness when dealing with task scheduling in mobile edge cloud computing, a task scheduling and resource management strategy for edge cloud computing based on an improved genetic algorithm was proposed. First, a user task scheduling system model based on edge cloud computing was constructed using the Shannon theorem, including calculation, communication, and network models. In addition, a multi-objective optimization model, including delay and energy consumption, was constructed to minimize the sum of two weights. Finally, the selection, crossover, and mutation operations of the genetic algorithm were improved using the best reservation selection algorithm and normal distribution crossover operator. Furthermore, an improved legacy algorithm was selected to deal with the multi-objective problem and acquire the optimal solution, that is, the best computing task scheduling scheme. The experimental analysis of the proposed strategy based on the MATLAB simulation platform shows that its energy loss does not exceed 50 J, and the time delay is 23.2 ms, which are better than those of other comparison strategies.