Heavy snowfall events have occurred frequently in the Yeongdong region but understanding of these events have trouble in lack of snowfall observation in this region because it is composed of complex topography like the "Taebaek mountains" and the "East sea". These problems can be solved by quantitative precipitation estimation technique using remote sensing such as radar, satellite, etc. Two radars which are able to cover over Yeondong region were installed at Gangneung (GNG) and Gwangdeoksan (GDK). This study uses radar and water equivalent of snow cover to investigate the characteristics of radar echoes and the $Z_e-R$ relations associated with the 10 Yeongdong heavy snowfall events during the last 5 years (2010~2014). It was found that the heights which the probability of detection (POD) of snow detection by GNG radar is more than 80% are 3,000 m and 1,500 m in convective cloud and stratiform cloud, respectively. The vertical gradient of radar reflectivity is less decreased in convective cloud than stratiform cloud. However, POD by GDK radar are lower than 80% at all layers because the majority of Yeondong observational stations are more than 100 km away from GDK radar site. Furthermore, we examined $Z_e-R$ relation from the 10 events using GNG radar and compared the "a" and "b" obtained from these examinations at Sokcho (SC) and Daegwallyeong (DG). These "a" and "b" are estimated from radar echo at 500 m (SC) and 1,500 m (DG). The values of "a" differ in their stations such as SC and DG are 30~116 and 6~39, respectively. But "b" is 0.4~1.7 irrespective of stations. Moreover, the value of "a" increased with surface air temperature. Therefore, quantitative precipitation estimation in heavy snowfall events by radar echo using fixed "a" and "b" is difficult because these values changed according to those precipitation characteristics.
Yonghun Ro;Ki-Ho Chang;Yun-kyu Lim;Woonseon Jung;Jinwon Kim;Yong Hee Lee
Journal of Environmental Science International
/
v.33
no.1
/
pp.43-57
/
2024
The possible experimental time for cloud seeding was analyzed in South Korea. Rain gauge and radar precipitation data collected from September 2017 to August 2022 in from the three main target stations of cloud seeding experimentation (Daegwallyeong, Seoul, and Boryeong) were analyzed. In this study, the assumption that rainfall and cloud enhancement originating from the atmospheric updraft is a necessary condition for the cloud seeding experiment was applied. First, monthly and seasonal means of the precipitation duration and frequency were analyzed and cloud seeding experiments performed in the past were also reanalyzed. Results of analysis indicated that the experiments were possible during a monthly average of 7,025 minutes (117 times) in Daegwallyeong, 4,849 minutes (81 times) in Seoul, and 5,558 minutes (93 times) in Boryeong, if experimental limitations such as the insufficient availability of aircraft is not considered. The seasonal average results showed that the possible experimental time is the highest in summer at all three stations, which seems to be owing to the highest precipitable water in this period. Using the radar-converted precipitation data, the cloud seeding experiments were shown to be possible for 970-1,406 hours (11-16%) per year in these three regions in South Korea. This long possible experimental time suggests that longer duration, more than the previous period of 1 hour, cloud seeding experiments are available, and can contribute to achieving a large accumulated amount of enhanced rainfall.
Park, Kyung-Won;Kim, Jong-Pil;Kim, Na-Ri;Kim, Young-Seup
Proceedings of the Korea Water Resources Association Conference
/
2012.05a
/
pp.265-265
/
2012
한반도 지역의 강설(snowfall)은 전체 연 강수량의 약 10% 이하로 매우 적은 양을 차지하고 있다. 하지만 강설은 대기질(air quality)을 개선하고 산불 발생률을 저감시키며, 특히 봄철 수자원의 제공과 가뭄피해 경감 등 수문학적으로도 중요한 기능을 가진다. 하지만 최근 기후변화로 인해 폭설 현상이 빈번하게 발생하여 사회 경제적 손실을 유발하고 있다. 따라서 강설로 인한 피해를 최소한으로 줄이기 위해서는 정확한 강설탐지 및 강설 추정 방법이 필요하다. 최근 해외의 수많은 연구들을 통하여 수동 마이크로파 센서 자료를 활용한 강설 추정의 가능성이 확인되고 있다. 하지만 수동 마이크로파 센서의 휘도온도를 이용한 추정 방법들은 대기의 연직 구조 파악에 어려움이 있기 때문에 정확한 강설량을 추정하는 데에 한계가 있다. 그러나 2006년 발사된 CloudSat의 Cloud Profiling Radar는 강설의 연직 프로파일에 대한 가치 있는 정보를 제공하기 때문에 수동 마이크로파 센서 자료와의 결합을 통해 보다 정확한 강설 추정 알고리즘을 제시할 수 있을 것으로 판단된다. 따라서 본 연구에서는 CloudSat의 Cloud Profiling Radar (CPR) 자료와 수동 마이크로파 센서인 NOAA의 Microwave Humidity Sounder (MHS) 센서 자료를 결합하여 한반도 강설 추정에 적합한 알고리즘을 개발하고자 한다.
In this paper, we propose an automatic hand gesture area extraction and recognition technique using FMCW radar-based point cloud and LSTM. The proposed technique has the following originality compared to existing methods. First, unlike methods that use 2D images as input vectors such as existing range-dopplers, point cloud input vectors in the form of time series are intuitive input data that can recognize movement over time that occurs in front of the radar in the form of a coordinate system. Second, because the size of the input vector is small, the deep learning model used for recognition can also be designed lightly. The implementation process of the proposed technique is as follows. Using the distance, speed, and angle information measured by the FMCW radar, a point cloud containing x, y, z coordinate format and Doppler velocity information is utilized. For the gesture area, the hand gesture area is automatically extracted by identifying the start and end points of the gesture using the Doppler point obtained through speed information. The point cloud in the form of a time series corresponding to the viewpoint of the extracted gesture area is ultimately used for learning and recognition of the LSTM deep learning model used in this paper. To evaluate the objective reliability of the proposed technique, an experiment calculating MAE with other deep learning models and an experiment calculating recognition rate with existing techniques were performed and compared. As a result of the experiment, the MAE value of the time series point cloud input vector + LSTM deep learning model was calculated to be 0.262 and the recognition rate was 97.5%. The lower the MAE and the higher the recognition rate, the better the results, proving the efficiency of the technique proposed in this paper.
Significant research has been conducted on the W-band synthetic aperture radar (SAR) system that utilizes the 77 GHz frequency modulation continuous wave (FMCW) radar. To reconstruct the high-resolution W-band SAR image, it is necessary to transform the point cloud acquired from the stereo cameras or the LiDAR in the direction of 6 degrees of freedom (DOF) and apply them to the SAR signal processing. However, there are difficulties in matching images due to the different geometric structures of images acquired from different sensors. In this study, we present the method to extract an optimized depth map by obtaining 6 DOF of the point cloud using a gradient descent method based on the entropy of the SAR image. An experiment was conducted to reconstruct a tree, which is a major road environment object, using the constructed W-band SAR system. The SAR image, reconstructed using the entropy-based gradient descent method, showed a decrease of 53.2828 in mean square error and an increase of 0.5529 in the structural similarity index, compared to SAR images reconstructed from radar coordinates.
In this paper, a human activity regeneration (HAR) system based on multiple input multiple output frequency modulation continuous wave (MIMO FMCW) radar was designed and implemented. Using point cloud data from MIMO radar sensors has advantages in terms of privacy, safety, and accuracy. For the implementation of the HAR system, a customized neural network based on PointPillars and depthwise separate convolutional neural network (DS-CNN) was developed. By processing high-resolution point cloud data through a lightweight network, high accuracy and efficiency were achieved. As a result, the accuracy of 98.27% and the computational complexity of 11.27M multiply-accumulates (Macs) were achieved. In addition, the developed neural network model was implemented on Raspberry-Pi embedded system and it was confirmed that point cloud data can be processed at a speed of up to 8 fps.
For multi-mode radar signals in complex electromagnetic environment, different modes of one emitter tend to be deinterleaved into several emitters, called as "extension", when processing received signals by use of existing sorting methods. The "extension" problem inevitably deteriorates the sorting performance of multi-mode radar signals. In this paper, a novel method based on spatial data mining is presented to address above challenge. Based on theories of data field, we describe the distribution information of feature parameters using potential field, and makes partition clustering of parameter samples according to revealed distribution features. Additionally, an evaluation criterion based on cloud model membership is established to measure the relevance between different cluster-classes, which provides important spatial knowledge for the solution of the "extension" problem. It is shown through numerical simulations that the proposed method is effective on solving the "extension" problem in multi-mode radar signal sorting, and can achieve higher correct sorting rate.
Yun-Kyu Lim;Ki-Ho Chang;Yonghun Ro;Jung Mo Ku;Sanghee Chae;Hae-Jung Koo;Min-Hoo Kim;Dong-Oh Park;Woonseon Jung;Kwangjae Lee;Sun Hee Kim;Joo Wan Cha;Yong Hee Lee
Journal of Environmental Science International
/
v.32
no.12
/
pp.899-914
/
2023
Various seeding materials for cloud seeding are being used, and sodium chloride powder is one of them, which is commonly used. This study analyzed the experimental results of multi-aircraft cloud seeding in connection with Republic of Korea Air Force (CN235) and KMA/NIMS(Korea Meteorological Administration/National Institute of Meteorological Sciences) Atmospheric Research Aircraft. Powdered sodium chloride was used in CN235 for the first time in South Korea. The analysis of the cloud particle size distributions and radar reflectivity before and after cloud seeding showed that the growth efficiency of powdery seeding material in the cloud is slightly higher than that of hygroscopic flare composition in the distribution of number concentrations by cloud aerosol particle diameter (10 ~ 1000 ㎛). Considering the radar reflectivity, precipitation, and numerical model simulation, the enhanced precipitation due to cloud seeding was calculated to be a maximum of 3.7 mm for 6 hours. The simulated seeding effect area was about 3,695 km2, which corresponds to 13,634,550 tons of water. In the precipitation component analysis, as a direct verification method, the ion equivalent concentrations (Na+, Cl-, Ca2+) of the seeding material at the Bukgangneung site were found to be about 1000 times higher than those of other non-affected areas between about 1 and 2 hours after seeding. This study suggests the possibility of continuous multi-aircraft cloud seeding experiments to accumulate and increase the amount of precipitation enhancement.
Modeling of artificial targets in Synthetic Aperture radar (SAR) mainly simulates radar signals reflected from the faces and edges of the 3D Computer Aided Design (CAD) model with a ray-tracing method, and modeling of the clutter on the Earth's surface uses a method of distinguishing types with similar distribution characteristics through statistical analysis of the SAR image itself. In this paper, man-made targets on the surface and background clutter on the terrain are integrated and made into a three-dimensional (3D) point cloud scatterer model, and SAR image were created through computational signal processing. The results of the SAR Stripmap image generation of the actual automobile based SAR radar system and the results analyzed using EM modeling or statistical distribution models are compared with this 3D point cloud scatterer model. The modeling target is selected as an bridge because it has the characteristic of having both water surface and ground terrain around the bridge and is also a target of great interest in both military and civilian use.
In this study, a soil moisture estimation was performed using the Water Cloud Model (WCM), a backscatter model that considers vegetation based on SAR (Synthetic Aperture Radar). Sentinel-1 SAR and Sentinel-2 MSI (Multi-Spectral Instrument) images of a 40 × 50 km2 area including the Yongdam Dam watershed of the Geum River were collected for this study. As vegetation descriptor of WCM, Sentinel-1 based vegetation index RVI (Radar Vegetation Index), depolarization ratio (DR), and Sentinel-2 based NDVI (Normalized Difference Vegetation Index) were used, respectively. Forward modeling of WCM was performed by 3 groups, which were divided by the characteristics between backscattering coefficient and soil moisture. The clearer the linear relationship between soil moisture and the backscattering coefficient, the higher the simulation performance. To estimate the soil moisture, the simulated backscattering coefficient was inverted. The simulation performance was proportional to the forward modeling result. The WCM simulation error showed an increasing pattern from about -12dB based on the observed backscattering coefficient.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.