• Title/Summary/Keyword: cloud model

Search Result 1,254, Processing Time 0.022 seconds

Performance Evaluation of Monitoring System for Sargassum horneri Using GOCI-II: Focusing on the Results of Removing False Detection in the Yellow Sea and East China Sea (GOCI-II 기반 괭생이모자반 모니터링 시스템 성능 평가: 황해 및 동중국해 해역 오탐지 제거 결과를 중심으로)

  • Han-bit Lee;Ju-Eun Kim;Moon-Seon Kim;Dong-Su Kim;Seung-Hwan Min;Tae-Ho Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1615-1633
    • /
    • 2023
  • Sargassum horneri is one of the floating algae in the sea, which breeds in large quantities in the Yellow Sea and East China Sea and then flows into the coast of Republic of Korea, causing various problems such as destroying the environment and damaging fish farms. In order to effectively prevent damage and preserve the coastal environment, the development of Sargassum horneri detection algorithms using satellite-based remote sensing technology has been actively developed. However, incorrect detection information causes an increase in the moving distance of ships collecting Sargassum horneri and confusion in the response of related local governments or institutions,so it is very important to minimize false detections when producing Sargassum horneri spatial information. This study applied technology to automatically remove false detection results using the GOCI-II-based Sargassum horneri detection algorithm of the National Ocean Satellite Center (NOSC) of the Korea Hydrographic and Oceanography Agency (KHOA). Based on the results of analyzing the causes of major false detection results, it includes a process of removing linear and sporadic false detections and green algae that occurs in large quantities along the coast of China in spring and summer by considering them as false detections. The technology to automatically remove false detection was applied to the dates when Sargassum horneri occurred from February 24 to June 25, 2022. Visual assessment results were generated using mid-resolution satellite images, qualitative and quantitative evaluations were performed. Linear false detection results were completely removed, and most of the sporadic and green algae false detection results that affected the distribution were removed. Even after the automatic false detection removal process, it was possible to confirm the distribution area of Sargassum horneri compared to the visual assessment results, and the accuracy and precision calculated using the binary classification model averaged 97.73% and 95.4%, respectively. Recall value was very low at 29.03%, which is presumed to be due to the effect of Sargassum horneri movement due to the observation time discrepancy between GOCI-II and mid-resolution satellite images, differences in spatial resolution, location deviation by orthocorrection, and cloud masking. The results of this study's removal of false detections of Sargassum horneri can determine the spatial distribution status in near real-time, but there are limitations in accurately estimating biomass. Therefore, continuous research on upgrading the Sargassum horneri monitoring system must be conducted to use it as data for establishing future Sargassum horneri response plans.

Characteristics and Implications of Sports Content Business of Big Tech Platform Companies : Focusing on Amazon.com (빅테크 플랫폼 기업의 스포츠콘텐츠 사업의 특징과 시사점 : 아마존을 중심으로)

  • Shin, Jae-hyoo
    • Journal of Venture Innovation
    • /
    • v.7 no.1
    • /
    • pp.1-15
    • /
    • 2024
  • This study aims to elucidate the characteristics of big tech platform companies' sports content business in an environment of rapid digital transformation. Specifically, this study examines the market structure of big tech platform companies with a focus on Amazon, revealing the role of sports content within this structure through an analysis of Amazon's sports marketing business and provides an outlook on the sports content business of big tech platform companies. Based on two-sided market platform business models, big tech platform companies incorporate sports content as a strategy to enhance the value of their platforms. Therefore, sports content is used as a tool to enhance the value of their platforms and to consolidate their monopoly position by maximizing profits by increasing the synergy of platform ecosystems such as infrastructure. Amazon acquires popular live sports broadcasting rights on a continental or national basis and supplies them to its platforms, which not only increases the number of new customers and purchasing effects, but also provides IT solution services to sports organizations and teams while planning and supplying various promotional contents, thus creates synergy across Amazon's platforms including its advertising business. Amazon also expands its business opportunities and increases its overall value by supplying live sports contents to Amazon Prime Video and Amazon Prime, providing technical services to various stakeholders through Amazon Web Services, and offering Amazon Marketing Cloud services for analyzing and predicting advertisers' advertising and marketing performance. This gives rise to a new paradigm in the sports marketing business in the digital era, stemming from the difference in market structure between big tech companies based on two-sided market platforms and legacy global companies based on one-sided markets. The core of this new model is a business through the development of various contents based on live sports streaming rights, and sports content marketing will become a major field of sports marketing along with traditional broadcasting rights and sponsorship. Big tech platform global companies such as Amazon, Apple, and Google have the potential to become new global sports marketing companies, and the current sports marketing and advertising companies, as well as teams and leagues, are facing both crises and opportunities.

Critical Success Factor of Noble Payment System: Multiple Case Studies (새로운 결제서비스의 성공요인: 다중사례연구)

  • Park, Arum;Lee, Kyoung Jun
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.59-87
    • /
    • 2014
  • In MIS field, the researches on payment services are focused on adoption factors of payment service using behavior theories such as TRA(Theory of Reasoned Action), TAM(Technology Acceptance Model), and TPB (Theory of Planned Behavior). The previous researches presented various adoption factors according to types of payment service, nations, culture and so on even though adoption factors of identical payment service were presented differently by researchers. The payment service industry relatively has strong path dependency to the existing payment methods so that the research results on the identical payment service are different due to payment culture of nation. This paper aims to suggest a successful adoption factor of noble payment service regardless of nation's culture and characteristics of payment and prove it. In previous researches, common adoption factors of payment service are convenience, ease of use, security, convenience, speed etc. But real cases prove the fact that adoption factors that the previous researches present are not always critical to success to penetrate a market. For example, PayByPhone, NFC based parking payment service, successfully has penetrated to early market and grown. In contrast, Google Wallet service failed to be adopted to users despite NFC based payment method which provides convenience, security, ease of use. As shown in upper case, there remains an unexplained aspect. Therefore, the present research question emerged from the question: "What is the more essential and fundamental factor that should takes precedence over factors such as provides convenience, security, ease of use for successful penetration to market". With these cases, this paper analyzes four cases predicted on the following hypothesis and demonstrates it. "To successfully penetrate a market and sustainably grow, new payment service should find non-customer of the existing payment service and provide noble payment method so that they can use payment method". We give plausible explanations for the hypothesis using multiple case studies. Diners club, Danal, PayPal, Square were selected as a typical and successful cases in each category of payment service. The discussion on cases is primarily non-customer analysis that noble payment service targets on to find the most crucial factor in the early market, we does not attempt to consider factors for business growth. We clarified three-tier non-customer of the payment method that new payment service targets on and elaborated how new payment service satisfy them. In case of credit card, this payment service target first tier of non-customer who can't pay for because they don't have any cash temporarily but they have regular income. So credit card provides an opportunity which they can do economic activities by delaying the date of payment. In a result of wireless phone payment's case study, this service targets on second of non-customer who can't use online payment because they concern about security or have to take a complex process and learn how to use online payment method. Therefore, wireless phone payment provides very convenient payment method. Especially, it made group of young pay for a little money without a credit card. Case study result of PayPal, online payment service, shows that it targets on second tier of non-customer who reject to use online payment service because of concern about sensitive information leaks such as passwords and credit card details. Accordingly, PayPal service allows users to pay online without a provision of sensitive information. Final Square case result, Mobile POS -based payment service, also shows that it targets on second tier of non-customer who can't individually transact offline because of cash's shortness. Hence, Square provides dongle which function as POS by putting dongle in earphone terminal. As a result, four cases made non-customer their customer so that they could penetrate early market and had been extended their market share. Consequently, all cases supported the hypothesis and it is highly probable according to 'analytic generation' that case study methodology suggests. We present for judging the quality of research designs the following. Construct validity, internal validity, external validity, reliability are common to all social science methods, these have been summarized in numerous textbooks(Yin, 2014). In case study methodology, these also have served as a framework for assessing a large group of case studies (Gibbert, Ruigrok & Wicki, 2008). Construct validity is to identify correct operational measures for the concepts being studied. To satisfy construct validity, we use multiple sources of evidence such as the academic journals, magazine and articles etc. Internal validity is to seek to establish a causal relationship, whereby certain conditions are believed to lead to other conditions, as distinguished from spurious relationships. To satisfy internal validity, we do explanation building through four cases analysis. External validity is to define the domain to which a study's findings can be generalized. To satisfy this, replication logic in multiple case studies is used. Reliability is to demonstrate that the operations of a study -such as the data collection procedures- can be repeated, with the same results. To satisfy this, we use case study protocol. In Korea, the competition among stakeholders over mobile payment industry is intensifying. Not only main three Telecom Companies but also Smartphone companies and service provider like KakaoTalk announced that they would enter into mobile payment industry. Mobile payment industry is getting competitive. But it doesn't still have momentum effect notwithstanding positive presumptions that will grow very fast. Mobile payment services are categorized into various technology based payment service such as IC mobile card and Application payment service of cloud based, NFC, sound wave, BLE(Bluetooth Low Energy), Biometric recognition technology etc. Especially, mobile payment service is discontinuous innovations that users should change their behavior and noble infrastructure should be installed. These require users to learn how to use it and cause infra-installation cost to shopkeepers. Additionally, payment industry has the strong path dependency. In spite of these obstacles, mobile payment service which should provide dramatically improved value as a products and service of discontinuous innovations is focusing on convenience and security, convenience and so on. We suggest the following to success mobile payment service. First, non-customers of the existing payment service need to be identified. Second, needs of them should be taken. Then, noble payment service provides non-customer who can't pay by the previous payment method to payment method. In conclusion, mobile payment service can create new market and will result in extension of payment market.

Development of a complex failure prediction system using Hierarchical Attention Network (Hierarchical Attention Network를 이용한 복합 장애 발생 예측 시스템 개발)

  • Park, Youngchan;An, Sangjun;Kim, Mintae;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.127-148
    • /
    • 2020
  • The data center is a physical environment facility for accommodating computer systems and related components, and is an essential foundation technology for next-generation core industries such as big data, smart factories, wearables, and smart homes. In particular, with the growth of cloud computing, the proportional expansion of the data center infrastructure is inevitable. Monitoring the health of these data center facilities is a way to maintain and manage the system and prevent failure. If a failure occurs in some elements of the facility, it may affect not only the relevant equipment but also other connected equipment, and may cause enormous damage. In particular, IT facilities are irregular due to interdependence and it is difficult to know the cause. In the previous study predicting failure in data center, failure was predicted by looking at a single server as a single state without assuming that the devices were mixed. Therefore, in this study, data center failures were classified into failures occurring inside the server (Outage A) and failures occurring outside the server (Outage B), and focused on analyzing complex failures occurring within the server. Server external failures include power, cooling, user errors, etc. Since such failures can be prevented in the early stages of data center facility construction, various solutions are being developed. On the other hand, the cause of the failure occurring in the server is difficult to determine, and adequate prevention has not yet been achieved. In particular, this is the reason why server failures do not occur singularly, cause other server failures, or receive something that causes failures from other servers. In other words, while the existing studies assumed that it was a single server that did not affect the servers and analyzed the failure, in this study, the failure occurred on the assumption that it had an effect between servers. In order to define the complex failure situation in the data center, failure history data for each equipment existing in the data center was used. There are four major failures considered in this study: Network Node Down, Server Down, Windows Activation Services Down, and Database Management System Service Down. The failures that occur for each device are sorted in chronological order, and when a failure occurs in a specific equipment, if a failure occurs in a specific equipment within 5 minutes from the time of occurrence, it is defined that the failure occurs simultaneously. After configuring the sequence for the devices that have failed at the same time, 5 devices that frequently occur simultaneously within the configured sequence were selected, and the case where the selected devices failed at the same time was confirmed through visualization. Since the server resource information collected for failure analysis is in units of time series and has flow, we used Long Short-term Memory (LSTM), a deep learning algorithm that can predict the next state through the previous state. In addition, unlike a single server, the Hierarchical Attention Network deep learning model structure was used in consideration of the fact that the level of multiple failures for each server is different. This algorithm is a method of increasing the prediction accuracy by giving weight to the server as the impact on the failure increases. The study began with defining the type of failure and selecting the analysis target. In the first experiment, the same collected data was assumed as a single server state and a multiple server state, and compared and analyzed. The second experiment improved the prediction accuracy in the case of a complex server by optimizing each server threshold. In the first experiment, which assumed each of a single server and multiple servers, in the case of a single server, it was predicted that three of the five servers did not have a failure even though the actual failure occurred. However, assuming multiple servers, all five servers were predicted to have failed. As a result of the experiment, the hypothesis that there is an effect between servers is proven. As a result of this study, it was confirmed that the prediction performance was superior when the multiple servers were assumed than when the single server was assumed. In particular, applying the Hierarchical Attention Network algorithm, assuming that the effects of each server will be different, played a role in improving the analysis effect. In addition, by applying a different threshold for each server, the prediction accuracy could be improved. This study showed that failures that are difficult to determine the cause can be predicted through historical data, and a model that can predict failures occurring in servers in data centers is presented. It is expected that the occurrence of disability can be prevented in advance using the results of this study.