• Title/Summary/Keyword: cloud lifetime effect

Search Result 5, Processing Time 0.017 seconds

Observational Evidence of Giant Cloud Condensation Nucleus Effects on the Precipitation Sensitivity in Marine Stratocumulus Clouds

  • Jung, Eunsil
    • Journal of the Korean earth science society
    • /
    • v.43 no.4
    • /
    • pp.498-510
    • /
    • 2022
  • Cloud-aerosol interactions are one of the paramount but least understood forcing factors in climate systems. Generally, an increase in the concentration of aerosols increases the concentration of cloud droplet numbers, implying that clouds tend to persist for longer than usual, suppressing precipitation in the warm boundary layer. The cloud lifetime effect has been the center of discussion in the scientific community, partly because of the lack of cloud life cycle observations and partly because of cloud problems. In this study, the precipitation susceptibility (So) matrix was employed to estimate the aerosols' effect on precipitation, while the non-aerosol effect is minimized. The So was calculated for the typical coupled, well-mixed maritime stratocumulus decks and giant cloud condensation nucleus (GCCN) seeded clouds. The GCCN-artificially introduced to the marine stratocumulus cloud decks-is shown to initiate precipitation and reduces So to approximately zero, demonstrating the cloud lifetime hypothesis. The results suggest that the response of precipitation to changes in GCCN must be considered for accurate prediction of aerosol-cloud-precipitation interaction by model studies

Analysis of Long-term Variations of Sunshine Duration and Precipitation Intensity Using Surface Meteorological Data Observed in Seoul and Busan in Korea (서울과 부산에서 관측된 일조 시간 및 강수 강도의 장기 변동 분석)

  • Lee, Hyo-Jung;Kim, Cheol-Hee
    • Atmosphere
    • /
    • v.19 no.3
    • /
    • pp.243-253
    • /
    • 2009
  • In other to interpret the long-term variations of sunshine duration, cloud lifetime, and precipitation intensity observed in and around Seoul and Busan for the period from 1986 to 2005, aerosol indirect effect was employed and applied. For the identification of long-term trend of aerosol concentration, observed visibility and AOT of AERONET sunphotometer data were also used over the same regions. The result showed that the time series of visibility was decreased and those of AOT increased, especially trends were remarkable in 2000s. In both regions, occurrence frequencies of observed cloudiness (cloud amount ${\leq}6/10$) and strong precipitation (rain rate > $0.5mmhour^{-1}$) have been steadily increased while those of cloudiness (cloud amount > 7/10) and weak precipitation (rain rate ${\leq}0.2mmhour^{-1}$) decreased. These results are corresponding to the trend of both visibility and AERONET data, implying the aerosol indirect effect that makes size of cloud droplet reduce, cloud life-time longer and precipitation efficiency decreased. Our findings demonstrate that, although these phenomena are not highly significant, weather and climate system over Korean urban area have been changed toward longer lifetime of small cloudiness and increasing precipitation intensity as a result of increased aerosol indirect effect.

An Analysis of Aerosol-Cloud Relationship Using MODIS and NCEP/NCAR Reanalysis Data around Korea (한반도 주변에서 MODIS와 NCEP/NCAR 재분석 자료를 이용한 에어로졸과 구름의 연관성 분석)

  • Kim, Yoo-Jun;Lee, Jin-Hwa;Kim, Byung-Gon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.2
    • /
    • pp.152-167
    • /
    • 2011
  • MODIS/Terra level 3 and NCEP/NCAR Reanalysis data from 2001 to 2008 have been analyzed to understand long-term aerosol and cloud optical properties, and their relationships around Korea. Interestingly, cloud fraction(CF) has the similar annual variation to aerosol optical depth (${\tau}_a$) without any temporal significant trend. Horizontal distributions of ${\tau}_a$ showed the substantial horizontal gradient from China to Korea, especially with the strong difference over the Yellow Sea, which could represent the evidence of the anthropogenic influence from China in the perspective of long-term average. Specifically the negative correlations between ${\tau}_a$ and liquid-phase cloud effective radius ($r_e$) were shown on the monthly-average basis, only in summer with significant associations over the Yellow Sea, but not in the other seasons and/or specific regions. Relationship between ${\tau}_a$ and CF for the low-level liquid-phase clouds exhibited the overall positive correlation, being consistent with cloud lifetime effect. Meanwhile static stability showed no deterministic relationships with ${\tau}_a$ as well as CF. The dependence of aerosol-cloud relationship on the meteorological conditions should be examined more in detail with the satellite remote sensing and reanalysis data.

Evolution of cometary dust particles to the inner solar system: Initial conditions, mutual collision and final sinks

  • Yang, Hongu;Ishiguro, Masateru
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.48.3-49
    • /
    • 2017
  • Interplanetary space of the solar system contains a large number of dust particles, referred to as Interplanetary Dust Particles (IDPs) cloud complex. They are observable through meteors and zodiacal lights. The relative contribution of possible sources to the IDPs cloud complex was an controversial topic, however, recent research (Yang & Ishiguro, 2015 and references therein) suggested a dominance of cometary origin. In this study, we numerically investigated the orbital evolution of cometary dust particles, with special concerns on different evolutionary tracks and its consequences according to initial orbits, size and particle shape. The effect of dust particle density and initial size-frequency distribution (SFD) were not decisive in total cloud complex mass and mass supply rate, when these physical quantities are confined by observed zodiacal light brightness and dust particle SFD at 1 au. We noticed that, if we assume the existence of fluffy aggregates discovered in the Earth's stratosphere and the coma of 67P/Churyumov-Gerasimenko, the required mass supply rate decreases significantly. We also found out that close encounters with planets (mostly Jupiter) are the dominating factor of the orbital evolution of dust particles, as the result, the lifetime of cometary dust particles are shorter than Poynting-Robertson lifetime (around 250 thousand years). As another consequence of severe close encounters, only a small fraction of cometary dust particles can be transferred into the orbit < 1 au. This effect is significant for large size particles of ${\beta}$ < 0.01. The exceptional cases are dust particles ejected from 2P/Encke and active asteroids. Because they rarely encounter with Jupiter, most dust particles ejected from those objects are governed by Poynting-Robertson effect and well transferred into the orbits of small semimajor axis. In consideration of the above effects, we directly estimated probability of mutual collisions between dust particles and concluded that mutual collisions in the IDPs cloud complex is mostly ignorable, except for the case of large sized particles from active asteroids.

  • PDF

Destruction of Giant Molecular Clouds by UV Radiation Feedback from Massive Stars

  • Kim, Jeong-Gyu;Kim, Woong-Tae;Ostriker, Eve C.;Skinne, M. Aaron
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.43.1-43.1
    • /
    • 2018
  • Star formation in galaxies predominantly takes place in giant molecular clouds (GMCs). While it is widely believed that UV radiation feedback from young massive stars can destroy natal GMCs by exciting HII regions and driving their expansion, our understanding on how this actually occurs remains incomplete. To quantitatively assess the effect of UV radiation feedback on cloud disruption, we conduct a series of theoretical studies on the dynamics of HII regions and its role in controlling the star formation efficiency (SFE) and lifetime of GMCs in a wide range of star-forming environments. We first develop a semi-analytic model for the expansion of spherical dusty HII regions driven by the combination of gas and radiation pressures, finding that GMCs in normal disk galaxies are destroyed by gas-pressure driven expansion with SFE < 10%, while more dense and massive clouds with higher SFE are disrupted primarily by radiation pressure. Next, we turn to radiation hydrodynamic simulations of GMC dispersal to allow for self-consistent star formation as well as inhomogeneous density and velocity structures arising from supersonic turbulence. For this, we develop an efficient parallel algorithm for ray tracing method, which enables us to probe a range of cloud masses and sizes. Our parameter study shows that the net SFE, lifetime (measured in units of free-fall time), and the importance of radiation pressure (relative to photoionization) increase primarily with the initial surface density of the cloud. Unlike in the idealized spherical model, we find that the dominant mass loss mechanism is photoevaporation rather than dynamical ejection and that a significant fraction of radiation escapes through low optical-depth channels. We will discuss the astronomical.

  • PDF