Journal of Korean Society for Geospatial Information Science
/
v.18
no.2
/
pp.29-33
/
2010
The purpose of LiDAR ground classification is to archive both goals which are acquiring confident ground points with high precision and describing ground shape in detail. In spite of many studies about developing optimized algorithms to kick out this, it is very difficult to classify ground points and describing ground shape by airborne LiDAR data. Especially it is more difficult in a dense forested area like Korea. Principle misclassification was mainly caused by complex forest canopy hierarchy in Korea and relatively coarse LiDAR points density for ground classification. Unfortunately, a lot of LiDAR surveying performed in summer in South Korea. And by that reason, schematic LiDAR points distribution is very different from those of Europe. So, this study propose enhanced ground classification method considering Korean land cover characteristics. Firstly, this study designate highly confident candidated LiDAR points as a first ground points which is acquired by using big roller classification algorithm. Secondly, this study applied weighted gradient kernel(WGK) algorithm to find and include highly expected ground points from the remained candidate points. This study methods is very useful for reconstruct deformed terrain due to misclassification results by detecting and include important terrain model key points for describing ground shape at site. Especially in the case of deformed bank side of river area, this study showed highly enhanced classification and reconstruction results by using WGK algorithm.
Ha, Hoon;Lee, Sang-Deug;Lee, Joong-Ki;Park, Chan-Oh;Mun, Tae-Ryong
Journal of Korean Society for Atmospheric Environment
/
v.22
no.5
/
pp.642-652
/
2006
In order to understand the characteristics of surface ozone concentration and high $O_3$ concentration days, regional data from seven air quality monitoring stations which were operated by local governments were analyzed Regional characteristics of $O_3$ concentration were analyzed with the data of $O_3$ concentration and the characteristics of $O_3$ generation and weather conditions by the selection of the days in which the concentration was higher than 80 ppb. In the case of daily variation, the lowest $O_3$ concentration was shown in all regions from 7am to 8am and the highest around at 4 pm. The monthly variation of mean $O_3$ concentration and ${\Delta}O_3$ values revealed a reducing pattern in July and August following the peak in June, and again a gradual increasing trend in September and October. The result shows that the amount of ozone is dependent on photochemical reaction. The days of $O_3$ generated more than 80 ppb in the region of Gwangyang-bay were 544 days(1,760 hrs). The frequency of occurrence in the region revealed a strong pattern with the order of Samil-dong, Jinsang, and Gwangmu-dong stations in the Gwangyang region. However, Tein-dong, which is the nearest station to air pollution material generation source, showed the lowest frequency in the study area. Consequently, the meteorological parameters which can easily generate the high concentration of $O_3$ in the region of Gwangyang-bay are characterized as follows; atmospheric temperature which is higher than $19^{\circ}C$, relative humidity with the range of $60{\sim}85%$, the less average wind velocity than 5 m/s, cloud cover which is less than 5/10, and the more duration of sunshine than 8 hours.
Korean Journal of Agricultural and Forest Meteorology
/
v.12
no.4
/
pp.298-306
/
2010
In this study, we evaluated the performance of Korea Land Data Assimilation System (KLDAS) for the estimation of evapotranspiration (ET) by comparing the modeled against the observed ET at Gwangneung deciduous forest of KoFlux site (GDK) from 2006 to 2008. Although the magnitudes of ET by KLDAS overestimated the observed ET, the seasonal patterns of KLDAS ET were comparable with the correlation coefficient of 0.78. The difference between the KLDAS ET and the observed ET was larger in spring and summer due to rapid plant growth and frequent rainfalls with high cloud cover, respectively. Compared to the ET estimated by NASA Global Land Data Assimilation System (GLDAS) with $0.25^{\circ}$ and $1^{\circ}$ resolution, the ET by KLDAS with 10 km resolution showed better agreement with the observation at the GDK site. Albeit further improvement is necessary, our results suggest that KLADS can be used as a practical tool to map ET and to examine its spatiotemporal variability over the Korean Peninsula.
Kim, Dae-Hyun;Denny, Widhiyanuriyawan;Min, Seung-Hwan;Lee, Dong-In;Yoon, Hong-Joo
Korean Journal of Remote Sensing
/
v.25
no.6
/
pp.475-486
/
2009
Harmful algal blooms (HAB) caused by the dominant species Cochlodinium polykrikoides (C. polykrikoides) appear in the South Sea of Korea and are particularly present in summer and fall seasons. Environmental factors such as water temperature, weather conditions (air temperature, cloud cover, sunshine, precipitation and wind) influence on the initiation and subsequent development of HAB. The purpose of this research was to study spatial and temporal variations of HAB in the Yeosu area using environmental (oceanic and meteorological) and satellite data. Chlorophyll-a concentrations were calculated using Sea-viewing Wide Field-of-view Sensor (SeaWiFS) images by an Ocean Chlorophyll 4 (OC4) algorithm, and HAB were estimated using the Red tide index Chlorophyll Algorithm (RCA). We also used the surface velocity of sequential satellite images applying the Maximum Cross Correlation method to detect chlorophyll-a movement. The results showed that the water temperature during HAB occurrences in August 2002-2008 was $19.4-30.2^{\circ}C$. In terms of the frequency of the mean of cell density of C. polykrikoides, the cell density of the HAB found at low (<300 cells/ml), medium (300-1000 cells/ml), and high (>1000 cells/ml) levels were 27.01%, 37.44%, and 35.55%, respectively. Meteorological data for 2002-2008 showed that the mean air temperature, precipitation, wind speed and direction, and sunshine duration were $22.39^{\circ}C$, 6.54 mm/day, 3.98 m/s (southwesterly), and 1-11.7 h, respectively. Our results suggest that HAB events in the Yeosu area can be triggered and extended by heavy precipitation and massive movement of HAB from the East China Sea. Satellite images data from July to October 2002-2006 showed that the OC4 algorithm generally estimated high chlorophyll-a concentration ($2-20\;mg/m^3$) throughout the coastal area, whereas the RCA estimated concentrations at $2-10\;mg/m^3$. The surface velocity of chlorophyll-a movement from sequential satellite images revealed the same patterns in the direction of the Tsushima Warm Current.
Kim, Wonkook;Lim, Taehong;Ahn, Jae-hyun;Choi, Jong-kuk
Korean Journal of Remote Sensing
/
v.37
no.5_2
/
pp.1269-1279
/
2021
Geostationary Ocean Color Imager II (GOCI-II), which are now operated successfully since its launch in 2020, acquires local area images with 12 Level 1B slot images that are sequentially acquired in a 3×4 grid pattern. The boundary areas between the adjacent slots are prone to discontinuity in radiance, which becomes even more clear in the following Level 2 data, and this warrants the precise analysis and correction before the distribution. This study evaluates the relative radiometric biases between the adjacent slots images, by exploiting the overlapped areas across the images. Although it is ideal to derive the statistics from humongous images, this preliminary analysis uses just the scenes acquired at a specific time to understand its general behavior in terms of bias and variance in radiance. Level 1B images of February 21st, 2021 (UTC03 = noon in local time) were selected for the analysis based on the cloud cover, and the radiance statistics were calculated only with the ocean pixels. The results showed that the relative bias is 0~1% in all bands but Band 1 (380 nm), while Band 1 exhibited a larger bias (1~2%). Except for the Band 1 in slot pairs aligned North-South, biases in all direction and in all bands turned out to have biases in the opposite direction that the sun elevation would have caused.
Normalized Difference Vegetation Index (NDVI) is utilized as an indicator to represent the vegetation condition on the land surface in various applications such as land cover, crop yield, agricultural drought, soil moisture, and forest disaster. However, satellite optical sensors for visible and infrared rays cannot see through the clouds, so the NDVI of the cloud pixel is not a valid value for the land surface. This study proposed a real-time correction of the underestimation noise for GEO-KOMPSAT-2A (GK2A) daily NDVI and made sure its feasibility through the quantitative comparisons with Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI and the qualitative interpretation of time-series changes. The underestimation noise was effectively corrected by the procedures such as the time-series correction considering vegetation phenology, the outlier removal using long-term climatology, and the gap filling using rigorous statistical methods. The correlation with MODIS NDVI was higher, and the difference was lower, showing a 32.7% improvement compared to the original NDVI product. The proposed method has an extensibility for use in other satellite products with some modification.
Oil spill accidents can cause various environmental issues, so it is important to quickly assess the extent and changes in the area and location of the spilled oil. In the case of oil spill detection using satellite imagery, it is possible to detect a wide range of oil spill areas by utilizing the information collected from various sensors equipped on the satellite. Previous studies have analyzed the reflectance of oil at specific wavelengths and have developed an oil spill index using bands within the specific wavelength ranges. When analyzing multiple images before and after an oil spill for monitoring purposes, a significant amount of time and computing resources are consumed due to the large volume of data. By utilizing Google Earth Engine, which allows for the analysis of large volumes of satellite imagery through a web browser, it is possible to efficiently detect oil spills. In this study, we evaluated the applicability of four types of oil spill indices in the area of various land cover using Sentinel-2 MultiSpectral Instrument data and the cloud-based Google Earth Engine platform. We assessed the separability of oil spill areas by comparing the index values for different land covers. The results of this study demonstrated the efficient utilization of Google Earth Engine in oil spill detection research and indicated that the use of oil spill index B ((B3+B4)/B2) and oil spill index C (R: B3/B2, G: (B3+B4)/B2, B: (B6+B7)/B5) can contribute to effective oil spill monitoring in other regions with complex land covers.
Won-Been Park;Heung-Bae Choi;Myeong-Soo Han;Ho-Sik Um;Yong-Sik Song
Journal of the Korean Society of Marine Environment & Safety
/
v.29
no.6
/
pp.536-542
/
2023
Satellites represent cutting-edge technology, of ering significant advantages in spatial and temporal observations. National agencies worldwide harness satellite data to respond to marine accidents and analyze ocean fluctuations effectively. However, challenges arise with high-resolution satellite-based sea surface temperature data (Operational Sea Surface Temperature and Sea Ice Analysis, OSTIA), where gaps or empty areas may occur due to satellite instrumentation, geographical errors, and cloud cover. These issues can take several hours to rectify. This study addressed the issue of missing OSTIA data by employing LaMa, the latest deep learning-based algorithm. We evaluated its performance by comparing it to three existing image processing techniques. The results of this evaluation, using the coefficient of determination (R2) and mean absolute error (MAE) values, demonstrated the superior performance of the LaMa algorithm. It consistently achieved R2 values of 0.9 or higher and kept MAE values under 0.5 ℃ or less. This outperformed the traditional methods, including bilinear interpolation, bicubic interpolation, and DeepFill v1 techniques. We plan to evaluate the feasibility of integrating the LaMa technique into an operational satellite data provision system.
Yongseok Kim;Jina Hur;Eung-Sup Kim;Kyo-Moon Shim;Sera Jo;Min-Gu Kang
Korean Journal of Agricultural and Forest Meteorology
/
v.26
no.1
/
pp.53-62
/
2024
In this study, we built a model to estimate frost occurrence in South Korea using single-input deep learning and multi-input deep learning. Meteorological factors used as learning data included minimum temperature, wind speed, relative humidity, cloud cover, and precipitation. As a result of statistical analysis for each factor on days when frost occurred and days when frost did not occur, significant differences were found. When evaluating the frost occurrence models based on single-input deep learning and multi-input deep learning model, the model using both GRU and MLP was highest accuracy at 0.8774 on average. As a result, it was found that frost occurrence model adopting multi-input deep learning improved performance more than using MLP, LSTM, GRU respectively.
Mongolia's solar-meteorological resources map has been developed using satellite data and reanalysis data. Solar radiation was calculated using solar radiation model, in which the input data were satellite data from SRTM, TERA, AQUA, AURA and MTSAT-1R satellites and the reanalysis data from NCEP/NCAR. The calculated results are validated by the DSWRF (Downward Short-Wave Radiation Flux) from NCEP/NCAR reanalysis. Mongolia is composed of mountainous region in the western area and desert or semi-arid region in middle and southern parts of the country. South-central area comprises inside the continent with a clear day and less rainfall, and irradiation is higher than other regions on the same latitude. The western mountain region is reached a lot of solar energy due to high elevation but the area is covered with snow (high albedo) throughout the year. The snow cover is a cause of false detection from the cloud detection algorithm of satellite data. Eventually clearness index and solar radiation are underestimated. And southern region has high total precipitable water and aerosol optical depth, but high solar radiation reaches the surface as it is located on the relatively lower latitude. When calculated solar radiation is validated by DSWRF from NCEP/NCAR reanalysis, monthly mean solar radiation is 547.59 MJ which is approximately 2.89 MJ higher than DSWRF. The correlation coefficient between calculation and reanalysis data is 0.99 and the RMSE (Root Mean Square Error) is 6.17 MJ. It turned out to be highest correlation (r=0.94) in October, and lowest correlation (r=0.62) in March considering the error of cloud detection with melting and yellow sand.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.