• Title/Summary/Keyword: clothing microclimate

Search Result 126, Processing Time 0.03 seconds

Clothing Microclimate and Subjective Sensation according to Wearing Hanbok of Korean and Japanese (한·일 양국인의 혼복 착의시 의복기후와 주관적 감각)

  • Sung, Su-Kwang;Kim, Myo-Hyang
    • Fashion & Textile Research Journal
    • /
    • v.3 no.3
    • /
    • pp.265-270
    • /
    • 2001
  • Korea and Japan, neighboring two nations, have similar cultural background and complicated relations in terms of their culture and constitution. In this study, clothing microclimate and subjective sensation of Korean and Japanese subjects for Hanbok, traditional costumes of Korea, were assessed and investigated differences between them. The results of the study were as follows. For Hanbok, the temperature within clothing at the chest have significant correlations with the variables of race and elapsed time with p<0.001. At the thigh, correlations with elapsed time were significant (p<0.001). For the humidity within clothing at the chest of Hanbok, correlations with variables of race were significant (p<0.001). At the thigh, correlations with race and elapsed time were significant(p<0.001). For Hanbok, Korean group reported 'slightly warm' whereas Japanese group reported 'hot' in the thermal sensation. For the humid sensation, Korean group reported 'neutral' and Japanese group reported 'humid'. For the comfort sensation, Korean group reported 'slightly uncomfortable' and Japanese group reported 'uncomfortable'. Japanese group reported high relation with comfort sensation and humidity of microclimate.

  • PDF

Effects of Differents types of Clothing and Colours on Clothing Microclimate in the Subjects wearing Sports Wear under Sunlight (일광하에서 운동시의 스포츠웨어 색상과 의복형태가 의복기후에 미치는 영향)

  • Kim, Tae-Kyu
    • Fashion & Textile Research Journal
    • /
    • v.3 no.3
    • /
    • pp.271-276
    • /
    • 2001
  • In this study, We endeavored to revaluate the effects of different types of clothing and colors on clothing microclimate in the subjects wearing sports wear at sunlight environment. This study was conducted 4 different kinds (cotton 100%) of clothing ensembles, that was W-1(long trousers and shirt of white color), B-1 (long trousers and shirt of black color), W-s (short trousers and shirt white color), B-s (short trousers and shirt black color) and were done in a climate chamber under sunlight ambient temperature ($33.67{\pm}1.8^{\circ}C$, $46.0{\pm}8.5%RH$) by three males subject who are in good healthy. Start a 20-min rest period, 20-min bouts of exercise and final 20-min recovery period were performed. The kinetic load was given for 20 minutes under the condition of 6.0 km/hr walking speed on the treadmill. The results is as followed In case of same type of garment, temperature within clothing which is based on difference of color the white ensemble keeps higher temperature than black one. According to distribution chart of temperature within clothing in case of chest, white one shows higher temperature than black one, in case of back, black one shows higher temperature than white one. Difference of heart rate was so clear and sequence is W-1>B-1>W-s>B-s, so we could find same tendency with temperature within clothing.

  • PDF

Evaluation of the Wear Comfort of Women's Fitted Sports T-shirts Made from Cool-Touch Fabrics (냉감 소재를 활용한 밀착형 여성 스포츠 상의의 착용쾌적성 평가)

  • Kim, Soyoung;Choi, Jiyoung;Lee, Heeran;Hong, Kyunghi
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.41 no.5
    • /
    • pp.929-938
    • /
    • 2017
  • This research investigated the effects of cool touch fabrics on thermo-regulating physical properties and subjective evaluation using a 3D fitted women's T-shirts in wear test. Qmax, clothing microclimate, microclimate wettedness, thermogram and subjective vote were observed during rest-right after an exercise-rest protocol. As a result, there was no single determining physical variable to explain the reasons of cool sensations of T-shirts made of cool touch fabric across the entire protocol. Qmax could partly predict a wear sensation at the initial stage when only insensible perspiration was presented. Simultaneous observation of temperature/humidity gradient understand from the inside to the outside of the clothing layer or microclimate wettedness calculated using vapor pressure were helpful to figure out the performance of cool touch fabric, especially at the later stage of the protocol when sweating was excessive. It was especially difficult to connect thermo-regulating physical variables to the subjective evaluation during transient conditions such as 'right after exercise' stage. It is necessary to measure the amount of heat and moisture transferred from the skin to the outside of clothing along with the physical properties measured in this study to understand the detailed mechanisms of why a cool sensation is evoked from tight fitting T-shirts made of newly developed cool touch fabrics.

The effects of subcutaneos fat on the system of clothing weights (체지방률이 착의량체계에 미친 영향)

  • 김양원
    • Journal of the Korean Home Economics Association
    • /
    • v.35 no.4
    • /
    • pp.139-148
    • /
    • 1997
  • The rates of subcutaneos fat on the system of clothing weights including clothing microclimate subjective sensations were measured to get basic data to develop guideline for healthy clothing life. for this study skinfold thickness the rate of subcutaneos fot clothing microclimate subjective sensations and clothing weights were measured from 85 male and 105 female colligians. The results were as follows: 1. The rate of subcutaneos fat showed negative correlation with the temperature inside clothing in chest but not with the temperatures in back and thigh. The correlation was not significant between the rate of subcutaneos fat and humidity inside clothing 2. The correlation between the rate of subcutaneos fat and thermal sensations was positively significant at 5% level. However no correlation was found between the rate of subcutaneos fat and humid sensations. 3. There was significant correlation between the rate of subcutaneos fat and under clothing weights and total clothing weights.

  • PDF

Effects of Individual Sweating Response on Changes in Skin Blood Flow and Temperature Induced by Heat of Sorption Wearing Cotton Ensemble

  • Tanaka, Kaori;Hirata, Kozo
    • Fashion & Textile Research Journal
    • /
    • v.2 no.5
    • /
    • pp.398-404
    • /
    • 2000
  • We examined the effect of individual sweating responses on thermoregulatory responses induced by heat of sorption, immediately after the onset of sweating. The present study consists of two experiments. In experiment 1, made of 100% cotton (C) and 100% polyester (P) clothing were exposed in the chamber at ambient temperature (Ta) of $27.2^{\circ}C$ and relative humidity (rh) raised from 50% to 95% at five different increase rates of environmental vapor pressure (VP). The increase rate of clothing surface temperature (Tcs), peak Tcs and peak time showed significant correlation with the increase rate of environmental VP in C-clothing (p<0.05). In experiment 2, seven female subjects were studied during leg water immersion ($35-41^{\circ}C$) for 70min in Ta of 27.2 and 50%rh. There were significant positive correlations in the increase rate of clothing microclimate VP vs. changes in Tcs, skin blood flow, mean skin temperature and mean body temperature (p<0.05). The present results showed that individual clothing microclimate VP had significant effects on thermoregulatory responses induced by heat of sorption wearing C ensembles.

  • PDF

Clothing Microclimate and Subjective Sensations by Wearing Long Johns in Mildly Cold Air (겨울철 실내 온도에서 내복 착용에 따른 의복 기후와 주관적 감각)

  • Kim Myung-Ju;Lee Joo-Young
    • Journal of the Korean Home Economics Association
    • /
    • v.42 no.10 s.200
    • /
    • pp.91-104
    • /
    • 2004
  • The purpose of this study was to examine the differences of clothing microclimates and the subjective sensations according to age, gender and clothing weight for $19^{\circ}C$ air temperature. This study was done to gain fundamental data related to saving heating energy and to improve health through wearing underwear (long johns) in lower indoor temperatures. The subjects were divided into four groups (6 young males, 5 young females, 6 old males, 6 old females), and our experiment consisted of three conditions; the first condition was wearing long underwear in $19^{\circ}C$ air (19CUW condition); the second condition was without wearing long underwear in $19^{\circ}C$ air (19C condition); and the third condition was without wearing underwear in $24^{\circ}C$ air (24C condition). The experiment showed that the clothing microclimate temperature and humidity was the lowest in the 19C condition and the highest in the 24C condition irrespective of age and gender. The clothing microclimate in the 19CUW condition was not significantly distinguishable from the other conditions. Clothing microclimate temperature and humidity when the subjects responded thermal comfort was $28\~34^{\circ}C$ and $15\~40\%$RH without any significant difference according to age and gender. For the thermal sensation, the 24C condition was regarded as the warmest environment by the four groups, and the next preference was the 19CUW condition (p<0.001). Young females and old males showed a tendency to feel colder than young males and old females. For the thermal sensation of hands and feet, the young groups felt the warmest in the 24C condition and the coolest in the 19 C condition (p<0.001). However, old males felt neutral for the foot thermal sensation without any significant difference between the three conditions. Old females felt neutral for both the hands and feet thermal sensations without any significant difference between the three conditions. Thermal preference was the highest in the 24C condition for the 4 groups. In the 19CUW condition, for the thermal preference, most young males and females responded 'No change'; on the other hand, mea of the old responded 'Warmer'(p<0.001). It was the 24C condition that the 4 subject groups felt the most thermally comfortable. In the 19CUW condition, over $80\%$ of responses of each group expressed satisfaction and in the 19C condition, over $80\%$ of responses of each group, except young females, expressed satisfaction. In conclusion, in view of the clothing microclimate and subjective sensations, the 24C condition was the condition that gave subjects the least cold stress and the best subjective preference. However, the 19C condition and the 19CUW condition was not such a cold stress as to give healthy subjects a thermal burden.

The Clothing Microclimates and Subjective Sensation for Casual Hanbok as School Summer Uniform (생활한복형 하절교복의 의복기후와 주관적 감각)

  • Yoo, Joungja;Kweon, Sooae
    • Korean Journal of Human Ecology
    • /
    • v.21 no.4
    • /
    • pp.765-780
    • /
    • 2012
  • This study was investigated the clothing microclimate, subjective sensation for the improvement of traditional koran high school student uniform so called "Saenghwal Hanbok". For the purpose, casual hanbok school summer uniforms were made. They were made of 4 different textiles materials - P/R, P100, P/C, P/R/S for blouses, P/W, P100, P/R, P/W/F for skirts. Then their clothing microclimate, subjective sensation were tested at room temperature $25{\pm}1^{\circ}C$ and $50{\pm}10%$ R.H. Clothing Microclimates wearing on the blouses were good matched comfort temperature range. Subjective sensations wearing on the blouses were better than those of traditional koran clothes so called "Hanbok" and quite same for western style clothes. Thermal sensations were indicated some hot condition, and moisture sensations were indicated some wet condition but tactile sensations and comfortable sensations were agreeable. The temperatures of the forehead and the breast wearing on the skirts were indicated the same results with the cases of the blouses. Leg temperatures were some lower than the mean skin temperature, the other parts' temperatures were slightly higher than blouses but the mean skin temperatures were satisfied comfortable ranges. Subjective sensations wearing on the skirts were better than those of the other traditional clothes and even Western clothes. Thermal sensations and moisture sensations were resulted the same with the case of blouses. Currently, P/R material and P/W material seemed to be cool and respectively suitable for blouses and skirts in summer among the materials of modernized Korean traditional costumes and school uniforms, since those materials lowered skin temperature. But better, physiologically pleasant materials for summer clothes should be development in consideration of clothing microclimate and subjective sensation.

Evaluation of Clothing Comfort and Anti-atopy Properties by Human Wear Test -Focused to Inner Wear Natural Dyed with Bamboo Charcoal- (인체착용실험에 의한 쾌적성 및 항아토피 성능평가 - 대나무숯 천연염색의류를 중심으로 -)

  • Kim, Sung-Hee;Shin, Youn-Sook
    • Fashion & Textile Research Journal
    • /
    • v.12 no.1
    • /
    • pp.122-128
    • /
    • 2010
  • This study examined several dyeing properties, physiological responses and comfort sensation of cotton knit underwear dyed with bamboo charcoal. The cotton knit underwear dyed with bamboo charcoal and treated with chitosan showed 99.9% antibacterial property and improved deodorization, and colorfastness. Eight children with atopic dermatitis worn underwear dyed with bamboo charcoal during 4 months. Their parents reported fewer itches of children. Wearing cotton knit underwear dyed with bamboo charcoal and non-dyed with bamboo charcoal respectively, these eight children rested for 20 minutes, then exercised for 10 minutes, and then rested for 30 minutes in the room maintained $28{\pm}1^{\circ}C$ and $50{\pm}5%R.H.$ Children's rectal temperature, skin temperature and microclimate inside garment of two types of cotton knit underwear were compared. As a result, the rectal temperature and skin temperature were higher when children were wearing underwear dyed with bamboo charcoal than non-dyed underwear. The microclimate temperature and microclimate humidity at the back of children were lower when children with underwear dyed with bamboo charcoal exercised and recovered.

The Effects of Underwear on Clothing Microclimate, Physiological Responses, and Subjective Sensations During Summer (하절기 속옷의 착용이 인체의 생리적 반응과 주관적 감각에 미치는 영향)

  • Kim, Yang-Weon
    • Korean Journal of Human Ecology
    • /
    • v.7 no.1
    • /
    • pp.139-146
    • /
    • 1998
  • The actual clothing conditions of male collegian were surveyed to analyse clothing contents and the rate of wearing underwear. Then, clothing microclimate, physiological responses, and subjective sensations were investigated through wearing trials on human body in climatic chamber based on the results from the survey. The results were follows: 1. Male collegian wore T-shirts, jeans, and socks in summer, and total clothing weight per body surface area was $561g/m^2$. The number of clothes for upper body were 1 layer, but the number of clothes for lower body were 2 layers. Subjective sensations have no significant difference with wearing underwear. 2. Most physiological responses including temperature inside clothing, mean skin temperature, skin temperature of chest, abdomen, thigh, and lower leg, and sweat rate, were higher in with-underwear than in without-underwear. But pulse rates were not significantly different between with-and without-underwear.

  • PDF

Development of Thermoregulating Textile Materials with Microencapsulated Phase Change Materials(PCM) -Wearing comfort of the developed thermoregulating textile materials- (PCM 마이크로캡슐을 이용한 열조절 섬유소재 개발 -열조절 섬유소재의 착용효과-)

  • 신윤숙;정영옥;전향란;손경희;김성희
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.6
    • /
    • pp.767-775
    • /
    • 2004
  • In order to evaluate physiological responses and comfort sensation of the developed thermoregulating textile material, polyester knit fabric was treated with phase change material (PCM) microcapsules by printing. Ten male subjects wearing an experimental best with and without PCMs were seated for 20 minutes, then exercised for 20 minutes, and then seated for 30 minutes in the chamber which was controlled under the temperatures of 20$\pm$1$^{\circ}C$, 50$\pm$5%R.H. The subject's skin temperature, microclimate inside garment and comfort sensation of two experimental bests were compared one another. As a result, the rectal temperature, skin temperature and mean skin temperature were similar in the two groups, and the subjects were not able to perceive the differences in comfort of the two experimental bests. However, the effect of PCM microcapsule could be seen from microclimate temperature and humidity. The microclimate temperature of the PCM garment at chest was significantly higher during exercise. The microclimate humidity of the PCM garment at chest was significantly lower during exercise and rest.