• 제목/요약/키워드: clothing insulation

검색결과 124건 처리시간 0.026초

이방향 형상기업합금을 이용한 지능형 보온성 등산용 자켓의 프로토타입 개발 (Prototype Intelligent Thermal Mountain Climbing Jacket Embedded with a Two Way Shape Memory Alloy)

  • 이지연;신연욱;김희정;백범기;김은애
    • 한국의류학회지
    • /
    • 제34권1호
    • /
    • pp.92-101
    • /
    • 2010
  • This study reports on the development of intelligent clothing using a shape memory alloy (SMA) that forms a still air layer and provides thermal insulation depending on the environment temperature. SMA springs were prepared with Nitinol and have an original length of 6mm and a latent length of 20mm with a response temperature of $24.5^{\circ}C$. Hysteresis was evaluated at a temperature between $0^{\circ}C$ and $40^{\circ}C$. An experimental outdoor jacket that was attached with 30 springs was compared with a commercial jacket in terms of the microclimate temperature, humidity, and comfort properties by human subject tests in the microclimate chamber set at $5{\pm}0.5^{\circ}C$. The results showed that the microclimate temperature of SMA embedded clothing system from the wear trials was higher than the commercial ones during the rest period after exercise, especially on the skin side. In addition the thermal, humidity, and comfort sensations of SMA embedded clothing were better than the commercial ones.

Phoenics를 이용한 옷감의 종류 및 두께의 변화에 따른 열전달 특성의 수치 해석적 연구 (A Numerical Study on Natural Convection Between Skin and Fabrics)

  • 홍지명
    • 한국의류학회지
    • /
    • 제19권1호
    • /
    • pp.142-148
    • /
    • 1995
  • In this study, FVM (Finite Volume Method) which is one of the 2-dimensional numerical approach has been conducted to anticipate the temperature distribution between skin and clothes by the change of air temperature and fabric characteristics including fabric thickness. Several experimental works have been done to understand the thermal insulation effect (If fabrics on a human body by measuring the averaged temperature in the air layer between skin and clothes or by measuring the thermal resistance of fabrics. However, the formal method is inconvenient to measure the temperature distribution in the air layer to evaluate the insulation rate of the clothes on the skin because the real size of the clearance between skin and the clothes is too small to place the temperature sensor, and in the Tatter method the relationship between human body and the fabrics are ignored. However, the numerical method will be very effective and economical way to evaluate the insulation efficiency of clothes when the computational result is in the reliable range. As the result of this study, the temperature change in the sir layer between skin and clothes was linear to the fabric thickness and this result coincides with many previous experimental results. Moreover, it is possible to predict the optimum fabric thickness for the best thermal insulation in the air layer between skin and clothes.

  • PDF

초다공성 에어로젤 함유 섬유상 복합체를 이용한 신발 안창소재에 관한 연구 (Study on Ultra Porous Aerogel/fiber Composite for Shoe Insole)

  • 오경화;박순자
    • 한국의류학회지
    • /
    • 제33권5호
    • /
    • pp.701-710
    • /
    • 2009
  • This study was conducted to develop excellent insole with good thermal insulation using new materials. We investigated that aerogel/fiber composite can be used as padding materials of shoes by comparing surface shape, moisture regain, water vapor permeability, thermal insulation and compression rate of insole materials tried with nonwoven fabric padding materials and insole sold in market. The results are as follows. Surface shapes were shown that the most appropriate material for sealing aerogel/fiber composite was high density fabric as per size of particle of aerogel. Moisture regain of aerogel/fabric composite was better than nonwoven fabric padding samples. However, when compared to insole sold in market, its moisture regain was worse than those of insole merchandises. Water vapor permeability was higher in material padded with nonwoven fabric than materials padded with aerogel/fiber composite in all three kinds of sealing fabrics. Thermal conductivity of aerogel/fabric composite was lower than nonwoven fabric material regardless of sealing fabrics. Thermal insulation of aerogel/fiber composite was higher than padding material of nonwoven fabric regardless of sealing fabrics. Compression rate of nonwoven (SP1) was higher than that of aerogel/fiber composite (SP2). Compressive elastic recovery rate of SP1 was also higher than that of SP2, which its compression rate and compressive elastic recovery rate were both poor. As the above result, ultra porous aerogel/fiber composite were proved to be material of good thermal insulation with lower thermal conductivity and also compression rate was proved to be low. Therefore, we can say that aerogel/fiber composite have high possibility to be used as insole materials for cold winter shoes requiring good thermal insulation protection.

한국 남자 군인 기능성 방한복 내피 개발을 위한 실태 및 만족도 조사 (A Survey on Actual Wearing Condition and Satisfaction of Functional Inner Winter Uniform for Male Soldiers in Korea)

  • 김연주;김선영
    • 한국의류학회지
    • /
    • 제46권5호
    • /
    • pp.910-926
    • /
    • 2022
  • Suitability for the human body, freedom to move and thermal insulation are important design considerations in military clothing. This study investigates the performance and wearer-satisfaction of the functional inner winter uniform currently used in Korea; it is hoped that our data can inform the development of a future version. Interviews were conducted, in which the participants suggested various improvements. The uniforms were mainly worn for guard duty or as daily attire in cold weather. The participants chose how many layers to wear according to the current situation, rather than sticking to the layering recommended in the manual. Layering choices did not significantly affect combat efficiency but were found to affect wearers' comfort. Wearers' satisfaction was found to depend on the convenience of the clothing, whether it was in the appropriate size, freedom to move and thermal insulation. Also, this study suggests a problem with the current size system, as the analysis of size distribution, across all sizes, the range of current production is insufficient to cover the demand.

Thermal Comfort Aspects of Pesticide-protective Clothing Made with Nonwoven Fabrics

  • Choi Jong-Myoung;Tanabe Shin-Ichi
    • International Journal of Human Ecology
    • /
    • 제3권1호
    • /
    • pp.55-72
    • /
    • 2002
  • The purpose of this study was to evaluate the thermal resistance of pesticideprotective clothing and to investigate its subjective wear performance. Three different nonwoven fabrics, which provide barrier properties against water and pesticide, were used to manufacture the experimental clothing: spunbonded nonwoven (SB), spunbonded/meltblown/spunbonded nonwoven (SM), and spunlaced nonwoven (SL). The thermal insulation values of the experimental clothing were measured with a thermal manikin, and other wear trials were performed on human subjects in a climate chamber at $28^{\circ}C$, with 70% R.H. and air movement at less than 0.15m/s. Our results found that the thermal resistance was lower in the SB experimental clothing than in the others; that the mean skin temperature of subjects who wore the experimental clothing made with SL was significantly lower than that of subjects who wore the SB and SM clothing; and that the microclimate temperature and humidity with SB were significantly higher than that of the others. Overall, the experimental clothing made with SL was more comfortable than the others in terms of subjective wear sensations.

무풍안정시의 부인용한복의 보온력에 관한 연구 -동제인체모형에 의한 실험- (Experimental Study on the Thermal Insulation of Woman's Korean-Styled Clothes under Still Air Condition -by the Instrumented Copper Mannequin on Standing-posture-)

  • 최정화
    • 한국의류학회지
    • /
    • 제1권1호
    • /
    • pp.7-13
    • /
    • 1977
  • The insulating values of 7 kinds of woman's Korean-styled clothes were examined on the instrumented copper mannequin standing upright under still air condition in a climatic chamber at $20^{\circ}C$ and $60\%$ R.H.. Results obtained are as follows: 1) High correlation coefficients were found in both between total insulating values of clothing (IT) and total clothing weight. and between IT and total clothing thickness while no significant difference was found between total clothing weight and total clothing thickness. 2) It seems possible to predict the approximate insulating value of woman's Korean styled clothes on still air condition by the total clothing weight.

  • PDF

쾌적한 군복 설계를 위한 의복기후 분포 (Distribution of clothing microclimate for making comfortable military uniform)

  • 김양원
    • 안보군사학연구
    • /
    • 통권1호
    • /
    • pp.231-247
    • /
    • 2003
  • To get the basic data for making comfortable military uniforms and to examine the distribution of clothing microclimate, seasonal fluctuations of skin temperature, subjective sensation, and clothing microclimate were measured from 10 males. The subject were questioned on thermal comfort in experiment. Clothing microclimate temperature at breast, skin temperature at four sites (breast, upper arm, thigh, leg), deep body temperature at eardrum( tympanic temperature), and subjective sensation were measured for an hour in the controlled climatic chamber. The subjects felt comfortable when skin temperature were recorded $34.43^{\circ}C$ at breast, $33.53^{\circ}C$ at upper arm, $32.9^{\circ}C$ at thigh, and 32.50 at leg. Then mean skin temperature was $33.55\pm$$0.63^{\circ}C$. Clothing microclimate temperature ranged from 31.2 to $33.8^{\circ}C$, and clothing microclimate humidity ranged from 49.80~52.41%. In the comparison of these results with the microclimate of military uniforms, it needs more insulation in clothing for military uniforms. It also says that military uniforms should be made of the textiles which can control humidity.

  • PDF

공기주입형 의복의 보온력 측정 및 다운재킷의 보온력과의 비교 (Comparisons of Thermal Insulations between on Air-Cell Pack Embedded Jacket and Down Jackets)

  • 김영빈;장원;김기림;김시연;백윤정;이주영
    • 한국의류학회지
    • /
    • 제39권1호
    • /
    • pp.55-62
    • /
    • 2015
  • This study investigated the thermal insulation of an air-cell pack embedded jacket and down jackets to understand the potential of air-cell pack as a filler for winter outdoor wear. A thermal manikin measured the thermal insulation of the following jackets: HD (heavy down jacket, total weight (Tw) 750g, goose down weight (Dw) 350g), LD (light down jacket, Tw 560g, Dw 140g), AF (air-cell pack embedded jacket, Tw 490g, trunk goose down in LD was replaced to air cell), F (film jacket, Tw 469g, but removed the air in the air-cell pack from the AF), and Control (control jacket, Tw 438g, removed the air-cell pack film from the F). Thermal insulations of each experimental condition were measured in a static standing posture. Total thermal insulations (IT) were 1.29clo (HD), 1.23clo (LD), 1.16clo (AF), 1.20clo (F), and 1.08clo (Control). Body regional thermal insulation was higher in the chest and back than in the abdomen and hip in all conditions. The results suggest that an economical and versatile outdoor jacket with superior thermal insulation will be feasible if the air volume is properly controlled in air-cell pack embedded jackets in consideration of regional different distribution and used in combination with film and down.

한국 남성용 단일의복의 앙상블 조합시의 온열특성 변화에 관한 연구 - 무풍, 풍속환경하에서 - (A Study on Changes in Thermal Performances in Ensembles Made up of Single Garments Marketed for Korean Men - In Still and Dynamic Air Conditions -)

  • 송민규;권서윤;정현미
    • 한국의류산업학회지
    • /
    • 제14권4호
    • /
    • pp.660-668
    • /
    • 2012
  • The purpose of this study is to analyze the thermal characteristics of garments marketed for Korean males and to investigate the influence of each garment on ensemble, by measuring their insulation values(clo) using thermal manikins. The results are as follows. The total insulations(clo) of ensembles for S/S seasons are between 1.46 and 2.6 clo, with the mean of 2.12 clo. The insulation in the still air condition is 1.23 clo, which means a decrease of 42% compared to the total insulation of all the component garments. The insulation of ensembles for S/S seasons in the dynamic air condition decreased by 46.8%, compared to the still air condition. The total insulation(clo) of ensembles for F/W seasons is between 3.84 and 7.36 clo with the mean of 4.74 clo. The insulation in the still air condition is 2.26 clo, which means a decrease of 53.6% compared to the total insulation of all the component garments. The insulation of ensembles for F/W seasons in the dynamic air condition decreased by 36.2%, compared to the still air condition. As the clo value of each component garment gets higher, the insulation of ensembles gets higher. Especially, the insulation of ensembles was more influenced by outer wear than inner wear. The insulation of ensembles could be predicted by the insulation of outerwear better.

풍속변화에 따른 순모의류의 온열특성 (The effect of air velocity on the thermal resistance of wool ensembles)

  • 송민규;전병익
    • 한국의류학회지
    • /
    • 제22권5호
    • /
    • pp.565-574
    • /
    • 1998
  • The purpose of the study was to determine the effect of air velocity on the thermal resistance of wool ensembles. Three suits for men with different weaving structure and density were made with the same design and size for the study. In addition, Y-shirt, underwear, and socks were prepared for constructing the ensembles. Thermal insulation of air layer and 3 ensembles were measured by using thermal manikin in environmental chamber controlled at 2$0^{\circ}C$ and 65% RH with various air velocity. The results were as follows: 1. Thermal resistance of air layer was 0.079 m2.$^{\circ}C$/W with no air velocity(less than 0.2m/sec). 2. Thermal resistance of air layer decreased with increasing the air velocity rapidly. When the air velocity was 0.25 and 2.89 m/sec, the decreasing rate was 15% and 61%, respectively compared with no air velocity. 3. While there was little difference among the effective thermal insulation of 3 ensembles having different weaving structure and density with no air velocity, there was sharp difference among them when the air velocity increased. That is, the decreasing rate of effective thermal insulation of the ensemble which has higher air permeability was higher. 4. The decreasing rates of the effective thermal resistances of plain, twill and satin ensemble were 61, 54, and 49%, respectively when the air velocity was 2.89 m/sec which was a maximum air velocity in this study.

  • PDF