• Title/Summary/Keyword: clothing insulation

Search Result 124, Processing Time 0.028 seconds

The Relationship between Weight of Single Garments and Thermal Insulation with a Thermal Manikin (써멀마네킨을 이용한 단일의복의 중량과 보온력에 관한 연구)

  • Choi, Jeong-Wha;Lee, Hyo-Hyun
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.33 no.2
    • /
    • pp.173-186
    • /
    • 2009
  • The purpose of this study was to examine the relationship between the weight of seasonal garments worn by Korean women in their daily lives and thermal insulation. We selected a total of 121 garments(13 kinds of Under garments, 51 Upper garments, 32 Lower garments, 15 Headgear, 10 Gloves Footgear) based on our previous survey using questionnaire and interview. Thermal insulation of single garment was measured with a thermal manikin. Also we measured garment weight, covering area, thickness, air permeability on the each garment(chamber air temperature: $21.5{\pm}0.5^{\circ}C$, humidity: $50{\pm}5%R.H.$ air speed: 0.15m/s). The results are as follow: The very strong positive correlation(r=0.905, p<.01) was recognized between the weight of single garment and thermal insulation. The regression equation of thermal insulation can be represented as follows: Thermal Insulation(clo)=$0.03+0.0004{\times}Garment$ Weight(g)($r^2$=0.820, SEE =0.059). There are significant differences in the thermal insulation and garment weight by season and garment type(p<.05). The each garment category's thermal insulation and garment weight has as follows: Under garment(0.06clo, 89g), Blouse Shirt T-shirt(0.13clo, 200g), Cardigan Sweater Vest(0.14clo, 287g), Coat Jacket Jumper(0.41clo, 890g), Skirt(0.16clo, 276g), Trousers(0.20clo, 438g), Headgear(0.03clo, 102g), Gloves Footgear(0.03clo, 33g).

Studies on the Thermal Insulation Effect of Bedding(III) - Thermal Insulation Effect of Underquilt - (이부자리 보온력에 관한 연구(III) - 요의 보온력 -)

  • Lee, Song-Ja;Sung, Su-Kwang
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.17 no.2
    • /
    • pp.301-306
    • /
    • 1993
  • Since the underquilt has an important role of supporting the human body in sleeping, it needs to sustain ample degrees of hardness, elasticity, humidity absorption, and warmth retention property and also to have the two ergonimical requirements : It should not be too soft to allow human bodies to sink in, and that it should be comfortable for humans to tum over in sleeping. This study aims to investigate the effect of the thermal insulation of the variation in weight applied to the underquilt. For this purpose, six items were selected as filling materials for the underquilt : cotton, wool, silk, down, polyester, cotton/ployester. Various weights were applied to each of the underquilts to survey the reduction tendency of its thermal insulation effect. The results are as follow : 1. The Thermal insulation effect of each underquilt decreased in an exponetial function as the weight on the underquilt was increased. 2. The thermal reduction curves according to the load weight insrease were shown to be constant in shape regardless of the weight increase. 3. At the weight of more than $25kg/m^2$ the degree of the thermal insulation effect of each underquilt was found to be in order of down>cotton>silk>polyester>wool>cotton/ployester. 4. The variation in load weight applied to each underquilt was shown to be in reverse correlation with the thermal insulation effect. An estimated regression formula can be made on the data.

  • PDF

Thermal Insulation of Protective Clothing Materials in Extreme Cold Conditions

  • Mohamed Zemzem;Stephane Halle;Ludwig Vinches
    • Safety and Health at Work
    • /
    • v.14 no.1
    • /
    • pp.107-117
    • /
    • 2023
  • Background: Thermophysiological comfort in a cold environment is mainly ensured by clothing. However, the thermal performance and protective abilities of textile fabrics may be sensitive to extreme environmental conditions. This article evaluated the thermal insulation properties of three technical textile assemblies and determined the influence of environmental parameters (temperature, humidity, and wind speed) on their insulation capacity. Methods: Thermal insulation capacity and air permeability of the assemblies were determined experimentally. A sweating-guarded hotplate apparatus, commonly called the "skin model," based on International Organization for Standardization (ISO) 11092 standard and simulating the heat transfer from the body surface to the environment through clothing material, was adopted for the thermal resistance measurements. Results: It was found that the assemblies lost about 85% of their thermal insulation with increasing wind speed from 0 to 16 km/h. Under certain conditions, values approaching 1 clo have been measured. On the other hand, the results showed that temperature variation in the range (-40℃, 30℃), as well as humidity ratio changes (5 g/kg, 20 g/kg), had a limited influence on the thermal insulation of the studied assemblies. Conclusion: The present study showed that the most important variable impacting the thermal performance and protective abilities of textile fabrics is the wind speed, a parameter not taken into account by ISO 11092.

An Experimental Study on the Thermal Insulation of the Linin Fabrics (의복 안감의 보온성에 관한 실험적 연구)

  • Jeong Young Ok;Choi Jeong Wha
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.8 no.1
    • /
    • pp.1-11
    • /
    • 1984
  • An attempt was made to determine individual thermal resistances of 2-lining fabrics ad 4-outer fabrics for Korean-styled clothes, and 4-lining fabrics ad 5-outer fabrics for Western-styled clothes at $19^{\circ}C$ and $24^{\circ}C$. The thermal insulation effects for different lining fabrics in Korean and Western-styled clothes were deduced in determining heart rate, rectal temperature, mean skin temperature and microclimates of subjects. The subjects were dressed experimental clothing which were made of lining and outer fabrics in question, and seated in an environmental chamber during the experiment. 1. Thermal resistances of lining fabrics : For Korean-styled clothes. nylon sheer is larger than unzosa. For Western-styled clothes, rayon, acetate, nylon(taffeta) and kalkali in that order. 2. Thermal resistances of lining fabrics combined : with outer fabrics: For Korean-styled clothes. the measured value is larger than the one of simple aggregate value. But in the case of Western-styled clothes, the measured value is smaller than simple aggregate value. 3. The effects of lining on the thermal insulation of the whole clothing: In case when subjects wore unlimited number of underwear, no matter what lining fabrics were used in Korean and Western-styled clothes less thermal insulation effects were indicated. For the case, however, if subjects wore only limited underwear, there are significant differences of thermal insulation between experimental clothings.

  • PDF

The Change of Clothing Insulation and Surface Temperature Measured by Thermography with the Ease of Pattern (의복의 여유분에 따른 단열력의 변화와 Thermogram을 활용한 의복 표면 온도 특성 분석)

  • Lee, Byung-Cheol;Hong, Kyung-Hi;Lee, Ye-Jin
    • Korean Journal of Human Ecology
    • /
    • v.19 no.6
    • /
    • pp.1045-1052
    • /
    • 2010
  • Effects of the ease of pattern on the thermal conditions of clothing were investigated through the measurement of clothing surface temperatures using infrared thermography. Four vests with different pattern ease were worn by five male subjects. Surface temperature distribution on the clothing were then examined using a thermogram to view thermo-regulating characteristics affected by the ease of pattern. Representative surface temperatures were calculated based on the percentage of the surface area within a certain temperature range and the midpoint value of the corresponding area. Representative surface temperatures matches well to the thermal insulation value measured by thermal manikin. Results indicated that representative surface temperature could be a useful quantitative value if some simple calculations were to be used alongside accurate image processing.

Effects of Air Velocity on the Thermal Insulation of Winter-padded Clothing Ensembles at 10℃ Air Temperature -Comparison of Human Wear Trials with a Thermal Manikin- (10℃ 환경에서 기류가 겨울철 패딩 의류의 한 벌 보온력에 미치는 영향 -인체 착용 및 서멀마네킹 측정 비교-)

  • Baek, Yoon Jeong;Cho, Kayoung;Hong, Yujin;Lee, Joo-Young
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.45 no.4
    • /
    • pp.703-713
    • /
    • 2021
  • This study was to investigate the thermal insulation of clothing ensembles, including padded jackets with two different filling types. Thermal insulation of the ensemble was measured using a thermal manikin in four conditions (10℃, 30% RH and 20℃, 50% RH with an air velocity of less than 0.15 m·s-1 and 1.5 m·s-1). Ten males participated at 10℃ and 30% RH with an air velocity of less than 0.15 m·s-1 and 1.5 m·s-1. The results showed that the polyester ensemble was warmer than a goose down ensemble in 0.15 m·s-1 conditions and the goose down ensemble had greater thermal insulation than the polyester ensemble at an air velocity of 1.5 m·s-1. Thermal insulation was reduced 5-7% when temperature decreased 10℃ and reduced 40-50% when air velocity reached 1.5 m·s-1 for both ensembles. Thermal insulation of the ensemble in human trials decreased more than a thermal manikin at 10℃, 30% RH with an air velocity of 1.5 m·s-1. Lower temperatures and human trials were effective in identifying the properties of the thermal insulation by filling types even though there were restrictions on the general application because of two types of a clothing ensemble.

Comfort Properties of Ski Wear Using Vapor-Permeable Water Repellent Fabrics and Thermal Insulation Battings (투습발수직물과 축열보온섬유를 이용한 스키웨어의 쾌적감)

  • Cho Gil Soo;Choi Jong Myoung;Lee Jung Ju;Lee Sern Woo
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.16 no.2
    • /
    • pp.245-254
    • /
    • 1992
  • The purpose of this study was to evaluate the mechanical thermal resistances and comfort properties of ski wear made with vapor-permeable water repellent (VPWR) fabrics and thermal insulation battings. Four types of experimental clothing were made with the combination of two VPWR fabrics (Hipora-$TM^{\circledR}$, Hipora-$CR^{\circledR}$) and two thermal insulation battings ($Viwarm^{\circledR},\;Airseal^{\circledR}$). Thermal resistances of ski wear were objectly evaluated by thermal manikin experiment ($21{\pm}\;2^{\circ}C,\;50{\pm}5\%$ R.H.,0.25 m/sec air velocity) and thermographic accessment ($2{\pm}2^{\circ}C,\;0\%$ R.H.,0.25 m/sec air velocity, and emissivity level : 1). Garment wear tests of ski wear included the measurement of the microclimate (inner temp. and relative humidity) of the experimental clothing by digital thermohygrometer and subject wear sensation using McNall's thermal comfort ratings. CBo values of experimental clothing 4 (Hipora-$CR^{\circledR}+Airseal^{\circledR}$) and 1 (Hipora-$TM^{\circledR}+Viwarm^{\circledR}$) were significantly higher than those of 2 (Hipora-$TM^{\circledR}+Airseal^{\circledR}$) and 3 (Hipora-$CR^{\circledR}+Viwarm^{\circledR}$). Thermal resistances in the points of breast, back, belly, and loin was significantly higher than those of upper am, fore arm, and shank of measuring points on the thermal manikin. According to the color map of the thermogram, the experimental clothing 4 indicated higher surface temperatures than the others showing more yellowish spots on the surface of clothing. Inner temperature of experimental clothing was not significantly different among the four types of ski wear, but relative humidities of experimental clothing were significantly different. Relative humidities of experimental clothing 1 and 3 showed higher than those of 2 and 4. Relative humidity of experimantal clothing was affected largely by the thermal resis- tance of thermal insulation batting materials. The subject wear sensation of experimental clothing 2 and 4 showed lower humidity than the others. Subject wear sensation was affected more by humidity sensation than by thermal sensation.

  • PDF

Dressing Poses in Relation to Clothing Thermal Insulation

  • Li, Jun;Zhang, Weiyuan;Liu, Yan
    • Fashion & Textile Research Journal
    • /
    • v.4 no.6
    • /
    • pp.544-549
    • /
    • 2002
  • By the movable thermal manikin developed by China Dong Hua university, the laws of clothing thermal insulation influenced by dressing poses are studied. It is found that $I_a$ on nude thermal manikin has no relation to testing pose as a whole (notable level is 5%), while the change of testing pose influences $I_a$ value on parts of body obviously. The testing result $I_{cle}$ on clothed thermal manikin has relation to testing pose. The $I_{cle}$ value of the whole body in seated pose decreases 20 percent compared with that in standing pose (notable level is 1%). In view of heat transmission theory, the reasons are pointed out based on the knowledge of heat transmission.

Influence of Clothing Weight on the Motor Ability -Focusing on the Kindergartners- (착의량이 운동능력에 미치는 영향에 관한 연구 - 유치원 아동을 중심으로-)

  • Song Myung-kyun;Choi Jeong-wha
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.12 no.1 s.26
    • /
    • pp.13-26
    • /
    • 1988
  • As the culture develops, the body of children nowadays improves, but their physical fitness is weaker than that of children in the past. If physical fitness strengthens through clothing, this must be the easiest and the most efficient long-range training method. To find out the solutions on the above mentioned problems through clothing, this study was made for the analysis of the correlations of clothing weight and physical fitness. The children's endurance upon cold can be explained by the physical fitness, and has relation with the clothing insulation. Therefore, motor ability was measured as an index of physical fitness and clothing weight was measured as an index of insulation. This observation was made in Spring and Fall, 1985, in which 339 kindergartners and their mothers were the subject. The results of the study were as follows: Physical fitness of children decreased in proportion to the clothing weight, and especially this can be seen in boys rather than in girls, and in Fall rather than in Spring. In case of the children who spent more time outdoors rather than indoors, who played in larger space, and who didn't have meat frequently, it turned out that their clothing weight was surprisingly lessened and their physical fitness was highly food.

  • PDF