• Title/Summary/Keyword: closed range

Search Result 634, Processing Time 0.031 seconds

Innovation in the planning of V-Y rotation advancement flaps: A template for flap design

  • Dolen, Utku Can;Kocer, Ugur
    • Archives of Plastic Surgery
    • /
    • v.45 no.1
    • /
    • pp.85-88
    • /
    • 2018
  • Local flaps exhibit excellent color matching that no other type of flap can compete with. Moreover, surgery using a local flap is easier and faster than surgery using a distant or free flap. However, local flaps can be much more difficult to design. We designed 2 templates to plan a V-Y rotation advancement flap. The template for a unilateral V-Y rotation advancement flap was used on the face (n=5), anterior tibia (n=1), posterior axilla (n=1), ischium (n=1), and trochanter (n=2). The template for a bilateral flap was used on the sacrum (n=8), arm (n=1), and anterior tibia (n=1). The causes of the defects were meningocele (n=3), a decubitus ulcer (n=5), pilonidal sinus (n=3), and skin tumor excision (n=10). The meningocele patients were younger than 8 days. The mean age of the adult patients was 50.4 years (range, 19-80 years). All the donor areas of the flaps were closed primarily. None of the patients experienced wound dehiscence or partial/total flap necrosis. The templates guided surgeons regarding the length and the placement of the incision for a V-Y rotation advancement flap according to the size of the wound. In addition, they could be used for the training of residents.

Structural Damping Effects on Stability of a Cantilever Column under Sub-tangentially Follower Force (종동력을 받는 외팔기둥의 동적 안정성에 미치는 구조감쇠 효과)

  • Min, Dong-Ju;Park, Jae-gyun;Kim, Moon-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.6_spc
    • /
    • pp.635-643
    • /
    • 2016
  • A stability theory of a damped cantilever column under sub-tangential follower forces is first summarized based on the stability map. It is then demonstrated that internal and external damping can be exactly transformed to Rayleigh damping so that the damping coefficients can be effectively determined using proportional damping. Particularly a parametric study with variation of damping coefficients is performed in association with flutter loads of Beck's column and it is shown that two damping coefficients can be correctly estimated for real systems under the assumption of Rayleigh damping. Finally a frequency equation of a cantilever beam subjected to both a sub-tangentially follower force and two kinds of damping forces is presented in the closed-form and its stability maps are constructed and compared with FE solutions in the practical range of damping coefficients.

Seiche Characteristics of Gun-Jang Harbor (군장항의 부진동 특성)

  • Cho, Yong-Jun;Park, Hyung-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.46-52
    • /
    • 2008
  • Lately Gun-Jang Harbor has undergone a drastic change in hydraulic characteristics due to newly added harbor protection measures, like a wharf and breakwater. The wharf and breakwater, with a training dike, were constructed to keep enough depth far navigation. They make the plan view of Gun-Jang Harbor semi closed and very elongated, which makes it very vulnerable to seiche. Hence it is an urgent task to unveil the hydraulic characteristics, like seiche, for the optimal operation of the new harbor system. In this study, we numerically analyze the seiche characteristics of Gun-Jang Harbor over the $10-4{\sim}10-3$ Hz frequency range, considering that wind waves due to seasonal winds are the most prevailing during winter in the West sea. As a wave driver, we use Mild Slope Eqs. and numerically integrate these using FEM based on Galerkin weak formulation. It turns out that the 1st, 2nd, 3rd and 4th eigen models are over 0.0009 Hz, 0.0013 Hz, 0.0017 Hz and 0.002 Hz.

Elastic analysis of interfacial stress concentrations in CFRP-RC hybrid beams: Effect of creep and shrinkage

  • Abderezak, Rabahi;Daouadji, Tahar Hassaine;Abbes, Boussad;Rabia, Benferhat;Belkacem, Adim;Abbes, Fazilay
    • Advances in materials Research
    • /
    • v.6 no.3
    • /
    • pp.257-278
    • /
    • 2017
  • A simple closed-form solution to calculate the interfacial shear and normal stresses of retrofitted concrete beam strengthened with thin composite plate under mechanical loads including the creep and shrinkage effect has been presented in this paper. In such plated beams, tensile forces develop in the bonded plate, and these have to be transferred to the original beam via interfacial shear and normal stresses. Consequently, debonding failure may occur at the plate ends due to a combination of high shear and normal interfacial stresses. These stresses between a beam and a soffit plate, within the linear elastic range, have been addressed by numerous analytical investigations. Surprisingly, none of these investigations has examined interfacial stresses while taking the creep and shrinkage effect into account. In the present theoretical analysis for the interfacial stresses between reinforced concrete beam and a thin composite plate bonded to its soffit, the influence of creep and shrinkage effect relative to the time of the casting, and the time of the loading of the beams is taken into account. Numerical results from the present analysis are presented both to demonstrate the advantages of the present solution over existing ones and to illustrate the main characteristics of interfacial stress distributions.

Analytical determination of shear correction factor for Timoshenko beam model

  • Moghtaderi, Saeed H.;Faghidian, S. Ali;Shodja, Hossein M.
    • Steel and Composite Structures
    • /
    • v.29 no.4
    • /
    • pp.483-491
    • /
    • 2018
  • Timoshenko beam model is widely exploited in the literature to examine the mechanical behavior of stubby beam-like components. Timoshenko beam theory is well-known to require the shear correction factor in order to recognize the nonuniform shear distribution at a section. While a variety of shear correction factors are appeared in the literature so far, there is still no consensus on the most appropriate form of the shear correction factor. The Saint-Venant's flexure problem is first revisited in the frame work of the classical theory of elasticity and a highly accurate approximate closed-form solution is presented employing the extended Kantorovich method. The resulted approximate solution for the elasticity field is then employed to introduce two shear correction factors consistent with the Cowper's and energy approaches. The mathematical form of the proposed shear correction factors are then simplified and compared with the results available in the literature over an extended range of Poisson's and aspect ratios. The proposed shear correction factors do not exhibit implausible issue of negative values and do not result in numerical instabilities too. Based on the comprehensive discussion on the shear correction factors, a piecewise definition of shear correction factor is introduced for rectangular cross-sections having excellent agreement with the numerical results in the literature for both shallow and deep cross-sections.

Evaluation of a Laser Altimeter using the Pseudo-Random Noise Modulation Technique for Apophis Mission

  • Lim, Hyung-Chul;Sung, Ki-Pyoung;Choi, Mansoo;Park, Jong Uk;Choi, Chul-Sung;Bang, Seong-Cheol;Choi, Young-Jun;Moon, Hong-Kyu
    • Journal of Astronomy and Space Sciences
    • /
    • v.38 no.3
    • /
    • pp.165-173
    • /
    • 2021
  • Apophis is a near-Earth object with a diameter of approximately 340 m, which will come closer to the Earth than a geostationary orbit in 2029, offering a unique opportunity for characterizing the object during the upcoming encounter. Therefore, Korea Astronomy and Space Science Institute has a plan to propose a space mission to explore the Apophis asteroid using scientific instruments such as a laser altimeter. In this study, we evaluate the performance metrics of a laser altimeter using a pseudorandom noise modulation technique for the Apophis mission, in terms of detection probability and ranging accuracy. The closed-form expression of detection probability is provided using the cross correlation between the received pulse trains and pseudo-random binary sequence. And the new ranging accuracy model using Gaussian error propagation is also derived by considering the sampling rate. The operation range is significantly limited by thermal noise rather than background noise, owing to not only the low power laser but also the avalanche photodiode in the analog mode operation. However, it is demonstrated from the numerical simulation that the laser altimeter can achieve the ranging performance required for a proximity operation mode, which employs commercially available components onboard CubeSat-scale satellites for optical communications.

Near-BER lossless Asymmetric 2PAM non-SIC NOMA with Low-Complexity and Low-Latency under User-Fairness

  • Chung, Kyuhyuk
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.43-51
    • /
    • 2021
  • As the number of mobile devices has been increasing tremendously, system capacity should be enlarged in future next generation communication, such as the fifth-generation (5G) and beyond 5G (B5G) mobile networks. For such future networks, non-orthogonal multiple access (NOMA) has been considered as promising multiple access technology. In this paper, to reduce both latency and complexity in existing NOMA, we propose non-successive interference cancellation (SIC) NOMA with asymmetric binary pulse amplitude modulation (2PAM), nearly without bit-error rate (BER) loss. First, we derive the closed form of BER expressions for non-SIC NOMA with asymmetric 2PAM, especially under Rayleigh fading channels. Then, it is shown that the BER performance of the stronger channel user who is supposed to perform SIC in conventional NOMA can be nearly achieved by the proposed non-SIC NOMA with asymmetric 2PAM, especially without SIC. Furthermore, we also show that the BER performance of the weaker channel user in conventional NOMA can be more closely achieved by the proposed non-SIC NOMA with asymmetric 2PAM. These BERs are shown to be achieved over the part of the power allocation range, which is consistent with the NOMA principle of user fairness. As a result, the non-SIC NOMA scheme with asymmetric 2PAM could be considered as a promising NOMA scheme toward next generation communication.

Design-Oriented Stability of Outer Voltage Loop in Capacitor Current Controlled Buck Converters

  • Zhang, Xi;Zhang, Zhongwei;Bao, Bocheng;Bao, Han;Wu, Zhimin;Yao, Kaiwen;Wu, Jing
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.869-880
    • /
    • 2019
  • Due to the inherent feedforward of load current, capacitor current (CC) control shows a fast transient response that makes it suitable for the power supplies used in various portable electronic devices. However, considering the effect of the outer voltage loop, the stable range of the duty-cycle is significantly diminished in CC controlled buck converters. To investigate the stability effect of the outer voltage loop on buck converters, a CC controlled buck converter with a proportion-integral (PI) compensator is taken as an example, and its second-order discrete-time model is established. Based on this model, the instability caused by the duty-cycle is discussed with consideration of the outer voltage loop. Then the dynamical effects of the feedback gain of the PI compensator and the equivalent series resistance (ESR) of the output capacitor on the CC controlled buck converter with a PI compensator are studied. Furthermore, the design-oriented closed-loop stability criterion is derived. Finally, PSIM simulations and experimental results are supplied to verify the theoretical analyses.

Smart Device for Efficient Sensing of Elevator (효율적인 승강기 센싱을 위한 스마트 디바이스)

  • Oh, Am-Suk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.10
    • /
    • pp.1249-1254
    • /
    • 2020
  • As the market for life friendly ICT (Information and Communication Technologies) services has grown up, high tech elevator with IoT (Internet of Things), a key area of the fourth industry, have become an indispensable part of life. Existing elevators are composed of up and down buttons to conveniently climb up and down high rise buildings, but there is a small inconvenience that everyone experiences depending on the characteristics of the user's composition, types of use, frequency, etc. Existing elevators are automatically closed if there are no people within the range of sensors, but they are inconvenient for the passengers with disabilities to carry luggage or to use. In this paper, the smart button, a hardware firmware device, was designed to relieve user inconvenience by opening the elevator for a certain period of time considering the boarding time of the passengers.

Partial Photoionization Cross Section of Collinear eZe Helium: Numerical Confirmation of Semiclassical Predictions

  • Lee, Min-Ho;Choi, Nark Nyul
    • Journal of the Korean Physical Society
    • /
    • v.73 no.10
    • /
    • pp.1486-1494
    • /
    • 2018
  • Based on the semiclassical theory of chaotic scattering, Tanner et al. [J. Phys. B 40, F157 (2007)] proposed the fluctuation in the partial photoionization cross section of helium below the double-ionization threshold would show the same characteristics as in the total cross section, predicting that the Fourier spectrum of the fluctuation reveals peaks at the classical actions of closed triple collision orbits and the amplitude of the fluctuation decreases algebraically as the energy approaches the double-ionization threshold. In that paper, however, the predictions were not clearly confirmed due to the lack of experimental data with sufficient accuracy. So instead, we calculate the partial photoionization cross sections of collinear eZe helium for the energy range from the single-ionization threshold $I_{20}$ to $I_{32}$ in order to numerically confirm the predictions. Analysis of the fluctuation in the partial cross section shows that the predictions are indeed valid. Our findings mean that the fluctuation in the partial photoionization cross section can be described by classical triple collision orbits in the semiclassical limit. Thus it explains in a natural way the mirroring and mimicking structures observed in cross section signals for different ionization channels.