• Title/Summary/Keyword: closed plant factory

Search Result 45, Processing Time 0.026 seconds

MICROPRECISION AGRICULTURE

  • Murase, Haruhiko
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.607-612
    • /
    • 2000
  • Microprecision agriculture for a fully controlled plant factory is proposed in this paper. Microprecision agriculture can be attained by using plant factories to realize profitable alternative agriculture. A closed, fully controlled, plant-growing factory is far better in terms of minimizing all sorts of waste. The limit and optimum design concept has to be applied to establish an economically feasible, fully controlled, plant-growing factory. To achieve this objective, microprecision technologies have to be developed. Microprecision technologies should be involved in sensing, modeling, controlling, and collecting information for the mechatronics for plant production. Basic technologies for microprecision are already available; they are SPA (speaking plant approach to environmental control), AI (artificial intelligence: expert systems, neural networks, genetic algorithms, photosynthetic algorithms etc.), bioinstrumentation, non-invasive measurement, biomechatronics, and biorobotics. A microprecision irrigation system for plug production is an example of a microprecision technology that has actually been implemented in a plug seedling production factory.

  • PDF

Effects of Nutrient Solution Application Methods and Rhizospheric Ventilation on Vegetative Growth of Young Moth Orchids without a Potting Medium in a Closed-Type Plant Factory

  • Min, Sang Yoon;Oh, Wook
    • Journal of People, Plants, and Environment
    • /
    • v.23 no.5
    • /
    • pp.545-554
    • /
    • 2020
  • Background and objective: Moth orchids in the vegetative stage are suitable for a multi-layer growing environment in a closed-type plant factory which can be a good alternative that can reduce production costs by reducing cultivation time and energy cost per plant. This study was conducted to find out the optimal rhizospheric environment for different irrigation methods without a potting medium and rhizospheric ventilation for the vegetative growth of young Phalaenopsis hybrid 'Blanc Rouge' (P. KV600 × P. Kang 1) and Phalaenopsis Queen Beer 'Mantefon' in a closed-type plant factory system. Methods: The one-month-old clonal micropropagules with bare roots rapped with a sponges were fixed on the holes of styrofoam plates above growth beds, and were watered using the ebb-and-flow (EBB) and aeroponic (AER) methods with Ichihashi solution (0.5 strength) once a day at 06:00 (P) or 18:00 (S), and both (PS). Rhizospheric ventilation (V) was also applied to change the temperature, relative humidity, and CO2 concentration of the beds. Plants potted into sphagnum moss and watered once a week were used as the control group. Results: After 12 months of treatment, the growth characteristics of the EBB groups were the best among the treatment groups without a medium, but no effect of irrigation timing was observed. V reduced the temperature, relative humidity and CO2 concentration of the beds. Whereas, EBB+V (ebb-and-flow with ventilation) improved plant growth and reduced the occurrence of disorders and withering. Especially, EBB+V showed a similar performance to the control group. Conclusion: The results indicated that the optimal irrigation method without a potting medium for producing middle-aged potted moth orchids was the EBB system with forced rhizospheric ventilation. Therefore, further studies on the optimal ventilation method and moisture control of the crown need to be carried out to develop the irrigation system without a potting medium for vertical farming in closed-type plant factories.

Sterilization Analysis of Harmful Microbes in LED Plant Factory using UV LED (UV LED를 이용한 LED식물공장 유해미생물 살균 분석)

  • Jang, Jun-Chul;Her, In-Sung;Lee, Se-Il;Yu, Young-Moon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.6
    • /
    • pp.15-20
    • /
    • 2014
  • Recently, LED (Light Emitting Diode) application research is studying by using a specific wavelength. LED plant factory produced a lot of green plants in a closed spaces, so it should be taken to guard against harmful microbes. Until today, a lot of studies for green plant production in plant factory is proceed but there were no study on harmful microbes in plant factory. Thus, the analysis on sterilization for harmful microbes in plant factory were experimented using UV (Ultra Violet) LED with 282nm of wavelength. As a results on sterilization of three harmful microbes, 50% of sterilization efficiency was achieved after 2.5 hours, 97% was achieved after 12 hours of UV LED irradiation, respectively.

Effects of Photoperiod, Light Intensity and Electrical Conductivity on the Growth and Yield of Quinoa (Chenopodium quinoa Willd.) in a Closed-type Plant Factory System

  • Austin, Jirapa;Jeon, Youn A;Cha, Mi-Kyung;Park, Sookuk;Cho, Young-Yeol
    • Horticultural Science & Technology
    • /
    • v.34 no.3
    • /
    • pp.405-413
    • /
    • 2016
  • Quinoa (Chenopodium quinoa Willd.) is a plant native to the Andean region that has become increasing popular as a food source due to its high nutritional content. This study determined the optimal photoperiod, light intensity, and electrical conductivity (EC) of the nutrient solution for growth and yield of quinoa in a closed-type plant factory system. The photoperiod effects were first analyzed in a growth chamber using three different light cycles, 8/16, 14/10, and 16/8 hours (day/night). Further studies, performed in a closed-type plant factory system, evaluated nutrient solutions with EC (salinity) levels of 1.0, 2.0 or $3.0dS{\cdot}m^{-1}$. These experiments were assayed with two light intensities (120 and $143{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) under a 12/12 and 14/10 hours (day/night) photoperiod. The plants grown under the 16/8 hours photoperiod did not flower, suggesting that a long-day photoperiod delays flowering and that quinoa is a short-day plant. Under a 12/12 h photoperiod, the best shoot yield (both fresh and dry weights) was observed at an EC of $2.0dS{\cdot}m^{-1}$ and a photosynthetic photon flux density (PPFD) of $120{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. With a 14/10 h photoperiod, the shoot yield (both fresh and dry weights), plant height, leaf area, and light use efficiency were higher when grown with an EC of $2.0dS{\cdot}m^{-1}$ and a PPFD of $143{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. Overall, the optimal conditions for producing quinoa as a leafy vegetable, in a closed-type plant factory system, were a 16/8 h (day/night) photoperiod with an EC of $2.0dS{\cdot}m^{-1}$ and a PPFD of $143{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$.

Optimal Planting Density on Growth and Quality Characteristics of Kohlrabi in a Closed-type Plant Factory System (완전제어형 식물공장에서 콜라비의 생육과 품질에 대한 적정 재식밀도)

  • Uoon, Chan-Il;Cho, Young-Yeol
    • Journal of Bio-Environment Control
    • /
    • v.28 no.2
    • /
    • pp.104-109
    • /
    • 2019
  • The crops recommended for the plant factory system are diverse. The importance of planting density in the plant factory is being recognized. The objective of this study was to determine the optimal planting density for growth and quality of kohlrabi in a closed-type plant factory system. The kohlrabi was grown under fluorescent lamps and nutrient film technique system. The growth and quality of kohlrabi were investigated under four different planting densities ($22plants/m^2(15{\times}30cm)$, $27plants/m^2(15{\times}25cm)$, and $33plants/m^2(15{\times}20cm)$). There were no significant interactions between Shoot fresh and dry weights per plant or bulb stem fresh and dry weights per plant and planting density. Shoot fresh and dry weight per area or bulb stem fresh and dry weight per area were the highest at $33plants/m^2$. There were no significant interactions between plant height, leaf area, photosynthetic rate, hardness, and chlorophyll content and planting density. Significant differences in Bulb stem height and diameter, and brix were observed. Bulb stem height and diameter and brix of kohlrabi were the highest at $22plants/m^2$. Based on our results, we conclude that the optimal planting density is $33plants/m^2$ for growth of kohlrabi, however, the optimal planting density is $22plants/m^2$ for quality of kohlrabi in a closed-type plant factory system.

State-of-The-Art Factory-Style Plant Production Systems

  • Takakura, Tadashi
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1996.05a
    • /
    • pp.1-10
    • /
    • 1996
  • Factory-style plant production systems of various kinds are the final goal of greenhouse production systems. These systems facilitate planning for constant productivity per unit area and labor under various outside weather conditions, although energy consumption is intensive. Physical environmental control in combination with biological control can replace the use of agricultural chemicals such as insecticides, herbicides and hormones to regulate plants. In this way, closed systems which do not use such agricultural chemicals are ideal for environmental conservation for the future. Nutrient components in plants can be regulafied by physical environmental control including nutrient solution control in hydroponics. Therefore, specific contents of nutrients for particular plants can be listed on the container and be used as the basis of customer choice in the future. Plant production systems can be classified into three types based on the type of lighting: natural lighting, supplemental lighting and completely artificial lighting (Plant Factory). The amount of energy consumption increases in this order, although the degree of weather effects is in the reverse order. In the addition to lighting, factory-style plant production systems consist of mechanized and automated systems for transplanting, environmental control, hydroponics, transporting within the facility, and harvesting. Space farming and development of pharmaceutical in bio-reactors are other applications of these types of plant production systems. Various kinds of state-of-art factory-style plant production systems are discussed in the present paper. These systems are, in general, rather sophisticated and mechaized, and energy consumption is intensive. Factory-style plant production is the final goal of greenhouse production systems and the possibilities for the future are infinte but not clear.

  • PDF

The Research of Interworking System for Closed Plant Factories (식물공장을 위한 인터워킹 서비스 시스템에 대한 연구)

  • Lee, Myeongbae;Baek, Miran;Park, Jangwoo;Cho, Yongyun;Shin, Changsun
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.11
    • /
    • pp.91-97
    • /
    • 2018
  • The plant factory represents one of the future agricultural systems into which ubiquitous information technology (U-IT) is incorporated, including sensor networking, and helps minimize the influence of external experimental factors that constrain the use of existing greenhouse cultivation techniques. A plant factory's automated cultivation system does not merely provide convenience for crop cultivation, but also expandability as a platform that helps build a knowledge database based on its acquired information and develop education and other application services using the database. For the expansion of plant factory services, this study designed a plant factory interworking service (PFIS) which allows plant factories to share crop growth-related information efficiently among them and performed a test on the service and its implementation.

DEVELOPMENT OF TRANSPLANT PRODUCTION IN CLOSED SYSTEM (PART II) - Irrigation Scheduling based on Evapotranspiration Rate-

  • Tateishi, M.;Murase, H.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.764-769
    • /
    • 2000
  • A new transplant production system that produces high quality plug seedlings of specific crop has been studied. It is a plant factory designed to produce massive amount of virus free seedlings. The design concept for building this plant factory is to realize maximum energy efficiency and minimum initial investment and running cost. The basic production strategy is the sitespecific management. In this case, the management of the growth of individual plantlet is considered. This requires highly automated and information intensive production system in a closed aseptic environment the sterilized specific crops. One of the key components of this sophisticated system is the irrigation system. The conditions that this irrigation system has to satisfy are: 1. to perform the site specific crop management in irrigation and 2. to meet the no waste standard. The objective of this study is to develop an irrigation scheduling that can implement the no waste standard.

  • PDF

Theoretical Design for the Production of Quinoa (Chenopodium quinoa Willd.) in a Closed Plant Factory

  • Bae, Jong Hyang;Austin, Jirapa;Jeon, Yoon-A;Cha, Mi-Kyung;Cho, Young-Yeol
    • Horticultural Science & Technology
    • /
    • v.34 no.6
    • /
    • pp.840-844
    • /
    • 2016
  • Quinoa (Chenopodium quinoa Willd.) is a grain crop with high nutritional value. The leaves and sprouts of quinoa can also be consumed either raw or cooked, providing considerably nutritional value as well as high antioxidant and anticancer activities. This study was carried out to obtain basic data to assist in the practical design of a plant factory with artificial lighting for the cultivation of quinoa as a leafy vegetable. We estimated the energy content of the quinoa and the electrical energy required to produce this crop. The yield was 1,000 plants per day, with a planting density and light intensity of $0.015m^2$ ($15{\times}10cm$) and $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, respectively. The total number of plants, cultivation area, and electricity consumption were estimated to be 25,000, $375m^2$, and $93,750{\mu}mol{\cdot}s^{-1}$, respectively. White fluorescent lamps were used at a power of 20.4 kW from 1,857 fluorescent lamps (FL, 55 W), and the cost for electricity was approximately 1,820 dollars (exchange rate of $1 = 1,200 won) per month. For a daily harvest of 1,000 plants per day in a closed plant factory, the estimated light installation cost, total installation cost, and total production cost would be 15,473, 46,421, and 55,704 dollars, respectively. The calculated production cost per plant, including labor costs, would be 27 cents for the 25-day cultivation period, with a marketable ratio of 80%. Considering the annual total expenses, income, and depreciation costs, the selling price per plant was estimated to be approximately 56 cents.

Optimal Cultivar Selection of Kohlrabi for Hydroponics Culture in a Closed-type Plant Factory System (완전제어형 식물공장내 수경재배용 콜라비 품종 선발)

  • Uoon, Chan-Il;Cha, Mi-Kyung;Jeon, Yoon-A;Cho, Young-Yeol
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.297-300
    • /
    • 2017
  • Plant factory can control artificially the environments for crop cultivation, so they can produce high quality agricultural products all year round. This study was carried to select suitable kohlrabi cultivar for hydroponics in a closed-type plant factory system. We used three cultivars of red kohlrabi, 'Asac kohl', 'Kolibri', and 'Purple king' as plant materials. The artificial light source was LED light, light intensity and photoperiod were $249{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ and 12/12 hours (day/night period), respectively. Hydroponic cultivation type was used circulating deep flow technique. At 43 days after transplanting, fresh weight of whole plant and tuber and leaf area were not significantly different among cultivars. Shoot dry weight and tuber dry weight were highest in 'Asac kohl' cultivar, and number of leaves was highest in 'Purple king' cultivar. Sugar content and yield were highest in 'Asac kohl' cultivar. Considering the growth and marketable yields, 'Asac kohl' was the optimal kohlrabi cultivar for hydroponic cultivation in a closed-type plant factory system.