• Title/Summary/Keyword: closed m-quasi Einstein metric

Search Result 2, Processing Time 0.016 seconds

CERTAIN SOLITONS ON GENERALIZED (𝜅, 𝜇) CONTACT METRIC MANIFOLDS

  • Sarkar, Avijit;Bhakta, Pradip
    • Korean Journal of Mathematics
    • /
    • v.28 no.4
    • /
    • pp.847-863
    • /
    • 2020
  • The aim of the present paper is to study some solitons on three dimensional generalized (𝜅, 𝜇)-contact metric manifolds. We study gradient Yamabe solitons on three dimensional generalized (𝜅, 𝜇)-contact metric manifolds. It is proved that if the metric of a three dimensional generalized (𝜅, 𝜇)-contact metric manifold is gradient Einstein soliton then ${\mu}={\frac{2{\kappa}}{{\kappa}-2}}$. It is shown that if the metric of a three dimensional generalized (𝜅, 𝜇)-contact metric manifold is closed m-quasi Einstein metric then ${\kappa}={\frac{\lambda}{m+2}}$ and 𝜇 = 0. We also study conformal gradient Ricci solitons on three dimensional generalized (𝜅, 𝜇)-contact metric manifolds.

GENERALIZED m-QUASI-EINSTEIN STRUCTURE IN ALMOST KENMOTSU MANIFOLDS

  • Mohan Khatri;Jay Prakash Singh
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.3
    • /
    • pp.717-732
    • /
    • 2023
  • The goal of this paper is to analyze the generalized m-quasi-Einstein structure in the context of almost Kenmotsu manifolds. Firstly we showed that a complete Kenmotsu manifold admitting a generalized m-quasi-Einstein structure (g, f, m, λ) is locally isometric to a hyperbolic space ℍ2n+1(-1) or a warped product ${\tilde{M}}{\times}{_{\gamma}{\mathbb{R}}$ under certain conditions. Next, we proved that a (κ, µ)'-almost Kenmotsu manifold with h' ≠ 0 admitting a closed generalized m-quasi-Einstein metric is locally isometric to some warped product spaces. Finally, a generalized m-quasi-Einstein metric (g, f, m, λ) in almost Kenmotsu 3-H-manifold is considered and proved that either it is locally isometric to the hyperbolic space ℍ3(-1) or the Riemannian product ℍ2(-4) × ℝ.