• 제목/요약/키워드: cloning animal

검색결과 278건 처리시간 0.028초

Bovine Nuclear Transfer using Ear Skin Fibroblast Cells Derived from Serum Starvation and Passage Numbers

  • Yang, Byoung-Chul;Im, Gi-Sun;Park, Jin-Ki;Kim, Hyun-Ju;Chang, Won-Kyung
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2001년도 춘계학술발표대회
    • /
    • pp.64-64
    • /
    • 2001
  • To facilitate the widespread application of somatic cell cloning, improvements in blastocyst production efficiency and subsequent fetal viability are required. Area where technical improvements are needed include donor cell treatments, starvation and passage numbers. This study was carried out to investigate the effect of serum-starvation and passage on the development of ear skin fibroblast cells cloned embryos. A skin biopsy was obtained from the ear of a 2-year-old Korean Hanwoo female. The cells were cultured in 10% FBS+DMEM up to 2-3 months(up to 10 passages) and then used. In Experiment 1, the Korean bovine Ear Skin Fibroblast cells (KbESF) were either serum starved (culture in 0.05% FBS+DMEM) or serum fed (10% FBS+DMEM) for 4-7 days Prior to NT In Experiment 2, the KbESF cells used for nuclear transfer in these experiments were from passages 2 to 10. The development of 208 nuclear transfer (NT) embryos reconstructed from either serum starved or serum fed ear skin fibroblast was assessed. NT embryos reconstructed from serum starved and serum fed cells showed the same developmental rate (cleavage 80.16 vs. 85.37%; blastocyst 20.63 vs. 19,51%). The development of 590 nuclear transfer (NT) embryos reconstructed from passage 2 to 10 was assessed. We observed the same developmental rates for embryos derived from later Passages as compared with those embryos from early passages(blastocyst from 16.69 to 27.91%, average 20.17%). There was no significant difference between serum-fed and serum-starved donor cells. We observed no difference in developmental rates for embryos derived from 2 to 10 passages. These data show that prolonged culture and serum starvation does not affects the cloning competence of adult somatic cells.

  • PDF

Correlation of Oct-4 and FGF-4 Gene Expression on Peri-Implantation Bovine Embryos Reconstructed with Various Somatic Cells

  • Yoon, Byung-Sun;Song, Sang-Jin;Do, Jeong-Tae;Hong, Seung-Bum;Lee, Hoon-Taek;Chung, Kil-Saeng
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2002년도 춘계학술발표대회 발표논문초록집
    • /
    • pp.66-66
    • /
    • 2002
  • The efficiency of animal production using cloning technology is relatively low. It is considered that the nuclear transferred (NT) embryos proceed inappropriate reconstruction with donor-recipient cell, which lead to a abnormal embryo development, and differential expression of mRNA transcript. Especially, the expression of mRNA on peri-implantation stage embryos is very important factor to decide success of implantation and ongoing pregnancy. (omitted)

  • PDF

Evidance that Two Mouse Deafness Mutation, Cir and Sr, are Allelic

  • Cho, Kyung-In;Lee, Eun-Ju;Kim, Myoung-Ok;Kim, Sung-Hyun;Park, Jun-Hong;Park, Jung-Ok;Ryoo, Zae-Young
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2002년도 춘계학술발표대회 발표논문초록집
    • /
    • pp.68-68
    • /
    • 2002
  • Positional cloning of hereditary deafness genes is a direct approach to identify molecules and mechanisms underlying auditory function. Nowadays many deafness genes are newly identified by finding the locus for the causative genes. Mutations at many different loci in humans and mice are known to cause hearing impairment. Mouse mutants exhibiting deafness may be useful in identifying some of genes involved. (omitted)

  • PDF

Cloning of Bovine Macrophage Colony-stimulating Factor

  • Kim, Tae-Yung;Kim, Cheol-Ho;Lee, Sang-Gil;Kang, Chung-Boo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제18권6호
    • /
    • pp.892-897
    • /
    • 2005
  • Macrophage colony-stimulating factor (M-CSF) is a growth factor required for growth and differentiation of mononuclear phagocyte lineage. Total and 16 poly (A) mRNA of bovine M-CSF were isolated from healthy bovine peripheral mononuclear cells stimulated by phobol 12-myristste 13-acetate (TPA). The more compatible cultured mononuclear cells were 5${\times}$10/ml for RNA isolation. TPA-activated mononuclear cells increased the level of M-CSF-mRNA more than concanavalin A (Con A) and lipopolysaccharide (LPS). The optimal analysis of reverse transcriptase-polymerase chain reaction (RT-PCR) for14 Macrophage colonystimulating factor (M-CSF) as a growth factor required for bovine M-CSF was denaturation at 94$^{\circ}C$ for 1 minute, annealing at 57$^{\circ}C$ for 1 minute, extension at 72$^{\circ}C$ for 1 minute for 30 cycles. The size of cDNA of bovine M-CSF by RT-PCR was 774 base pairs. A 774 base pairs cDNA encoding bovine M-CSF was synthesized by reverse transcriptase polymerase chain reaction (RT-PCR). Ligated cDNA was transformed to competent cells and then plasmid isolation and digestion was performed. Molecular cloning and sequencing were performed for cDNA of bovine M-CSF. The size of cloned cDNA of bovine M-CSF was 774base pairs. The homology of base sequence and amino acid sequence was 88% and 86% compared with known human M-CSF, respectively. From a high degree of sequence similarity, the obtained cDNA of bovine M-CSF is thought be a specific gene of bovine M-CSF.

Animal Breeding: What Does the Future Hold?

  • Eisen, E.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권3호
    • /
    • pp.453-460
    • /
    • 2007
  • An overview of developments important in the future of animal breeding is discussed. Examples from the application of quantitative genetic principles to selection in chickens and mice are given. Lessons to be learned from these species are that selection for production traits in livestock must also consider selection for reproduction and other fitness-related traits and inbreeding should be minimized. Short-term selection benefits of best linear unbiased predictor methodology must be weighed against long-term risks of increased rate of inbreeding. Different options have been developed to minimize inbreeding rates while maximizing selection response. Development of molecular genetic methods to search for quantitative trait loci provides the opportunity for incorporating marker-assisted selection and introgression as new tools for increasing efficiency of genetic improvement. Theoretical and computer simulation studies indicate that these methods hold great promise once genotyping costs are reduced to make the technology economically feasible. Cloning and transgenesis are not likely to contribute significantly to genetic improvement of livestock production in the near future.

진핵생물 Brassica juncea의 ${\gamma}$-glutamylcysteine synthetase 유전자 과발현이 원핵생물 Escherichia coii의 산화적 스트레스에 미치는 영향 - I. ${\gamma}$-ECS 유전자의 cloning - (Overexpression of a Eukaryotic ${\gammau}$-glutamylcysteine Synthetase Gene from Brassica juncea Improved Resistance to Oxidative Xtress in Escherichia coli)

  • 김혜기;신재천;이인애;허인경;;조진기
    • 한국초지학회:학술대회논문집
    • /
    • 한국초지조사료학회 2005년도 학술심포지엄, 제43회 학술발표회
    • /
    • pp.172-173
    • /
    • 2005
  • PDF

사람성장호르몬 유전자주입 토끼수정란의 핵이식에 의한 복제 (Cloning of MT -hGH Gene-injected Rabbit Embryos by Nuclear Transplantation)

  • 강태영;채영진;이항;박충생;이효종
    • 한국가축번식학회지
    • /
    • 제22권4호
    • /
    • pp.419-424
    • /
    • 1998
  • 토끼 수정란의 전핵에 MT-hGH 유전자를 주입하고 핵이식 기법으로 형질전환 복제수정란의 생산효율과 PCR 검색으로 복제수정란에서 유전자존재 여부를 조사한 바 다음과 같은 결론을 얻었다. 1. MT-hGH 유전자를 주입하여 8- 및 16- 세포기로 자란 수정란을 공핵란으로 사용하여 핵이식을 실시하였던 바, 세포융합률은 각각 60.0%, 62.8% 로 비슷하였으나 정상수정란을 공급핵으로 사용한 80.4% 보다 유의적으로 낮은 융합률을 보였다. 그러나 이들 복제수정란의 체외발달률은 처리군간에 유의적인 차이는 인정되지 않았다. 2. 유전자 주입 후 8- 및 16- 세포기로 자란 수정란의 할구를 이용하여 핵이식으로 복제하고 체외에서 배반포까지 자란 수정란을 PCR -screening으로 유전자를 검출한 결과, 각각 23% 와 33% 의 유전자 양성 수정란을 감별하였다.

  • PDF

Production of Cloned Korean Native Goat (Capra hircus) by Somatic Cell Nuclear Transfer

  • Park, H.S.;Jung, S.Y.;Kim, T.S.;Park, J.K.;Moon, T.S.;Hong, S.P.;Jin, J.I.;Lee, J.S.;Lee, J.H.;Sohn, S.H.;Lee, C.Y.;Moon, Y.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권4호
    • /
    • pp.487-495
    • /
    • 2007
  • The objectives of the present study were to initiate cloning of Korean native goat by somatic cell nuclear transfer (NT) and to examine whether unovulated (follicular) oocytes can support the same developmental ability of NT embryos as ovulated (oviductal) oocytes after hCG injection in stimulated cycles of the goat. The in vivo-matured and immature oocytes were collected from the oviducts and follicles of superovulated does, respectively, and the immature oocytes were maturated in vitro. Ear skin fibroblasts derived from a 3-yr-old female Korean native goat were used as the donors of nuclei or karyoplasts. Following fusion, activation and in vitro culture to a 2- to 4-cell stage, 49 in vitro-derived and 105 in vivo-derived embryos were transferred to 6 and 17 recipient does, respectively. One doe and three does of the respective groups were identified as pregnant by ultrasonography on day 30 after embryo transfer. However, only one doe, which had received in vivo-derived embryos, delivered a normal female kid of 1.9 kg on d 149. The cloned kid gained more weight than her age-matched females as much as 87% during the first 4 mo after birth (17.7 vs. $9.4{\pm}0.8$ kg) and reached puberty at 6-mo age a few months earlier than normal female does. The telomere length of the kid, which was similar to that of the donor fibroblast at 2-mo age, decreased 8% between 2- and 7-mo ages. Moreover, at 7-mo age, she had 21% shorter telomere than her age-matched goats. To our knowledge, this is the first case in which a cloned animal born with a normal weight exhibited accelerated growth and development. The unusually rapid growth and development of the cloned goat may have resulted from SCNT-associated epigenetic reprogramming involving telomere shortening.