• Title/Summary/Keyword: cloning and expression vector

Search Result 300, Processing Time 0.039 seconds

Cloning of Promoters from Alkali-tolerant Bacillus sp. (알카리 내성 Bacillus속 Promoter의 Cloning)

  • 유주현;구본탁;공인수;정용준;박영서
    • Microbiology and Biotechnology Letters
    • /
    • v.16 no.2
    • /
    • pp.126-130
    • /
    • 1988
  • Promoters of an alkali-tolerant Bacillus sp. isolated from soil have been cloned in Bacillus subtilis using promoter probe vector pPL703. The CAT specific activity of a clone harboring the strongest promoter activity among these transformants was 8.01. This activity was 2.5 times higher than that of Bacillus subtilis harboring expression vector pPL708 and was increased after the end of the logarithmic growth phase. In the 2.8kb of inserted DNA fragment, BamHI and Sal I recognition sites were located.

  • PDF

Cloning and Expression of Mycobacterium bovis Secreted Protein MPB83 in Escherichia coli

  • Xiu-Yun, Jiang;Wang, Chun-Feng;Wang, Chun-Fang;Zhang, Peng-Ju;He, Zhao-Yang
    • BMB Reports
    • /
    • v.39 no.1
    • /
    • pp.22-25
    • /
    • 2006
  • The gene encoding MPB83 from Mycobacterium bovis Vallee111 chromosomal DNA was amplified by using polymerase chain reaction (PCR) technique, and the PCR product was approximately 600bp DNA segment. Using T-A cloning technique, the PCR product was cloned into pGEM-T vector and the cloning plasmid pGEM-T-83 was constructed successfully. pGEM-T-83 and pET28a(+) were digested by BamHI and EcoRI double enzymes. The purified MPB83 gene was subcloned into the expression vector pET28a(+), and the prokaryotic expression vector pET28a-83 was constructed. Plasmid containing pET28a-83 was transformed into competence Escherichia coli BL21 (DE3). The bacterium was induced by isopropyl-$\beta$-D-thiogalactopyranoside (IPTG) and its lysates were loaded directly onto sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), approximately 26 kDa exogenous protein was observed on the SDS-PAGE. The protein was analyzed using Western-blotting. The results indicated that the protein was of antigenic activity of M. bovis. The results were expected to lay foundation for further studies on the subunit vaccine and DNA vaccine of MPB83 gene in their prevention against bovine tuberculosis.

Construction of an expression vector with SV40 DNA in a mammalian cell (SV 40 DNA를 이용한 포유동물의 유전자 운반체 개발)

  • 정민혜;김상해;전희숙;노현모
    • Korean Journal of Microbiology
    • /
    • v.25 no.3
    • /
    • pp.165-172
    • /
    • 1987
  • An expression vector in a mammalian cell was constructed using the origin of replication (OR) and the promoters of SV40. The plasmid pSVOE was constructed by inserting SV40 DNA fragment (1, 118bp) containing SV40 OR and promoters into pBR322-1, and then a multiple cloning sequence was inserted at the immediate downstream of the late promoter of SV40 in the pSVOE vector. The plasmid was named pSVML. As a selection marker, thymidine kinase gene of herpes simplex virus with its promoter was inserted into EcoRI site of pSVML and the recombinant was named pSVML-TKp. To test the expression capacity of foreigen gene inserted at the multiple cloning site of pSVML, the thymidine kinase gene without its own promoter was inserted at the BamHI site of pSVML. The recombinant was named pSVML-TK. These plasmids, pSVML-TKp and pSVML-TK, were transfected into COS cells with calcium phosphate precipitation method. The thymidine kinase activity was significantly increased in both transfected cells.

  • PDF

Molecular cloning and foreign gene expression of restriction endonuclease fragments of the Hc nuclear polyhedrosis virus DNA (Hc nuclear polyhedrosis virus DNA 제한효소절편의 molecular cloning 과 외래 유전자 발현)

  • Lee, Keun-Kwang
    • Journal of fish pathology
    • /
    • v.8 no.1
    • /
    • pp.31-36
    • /
    • 1995
  • Hc nuclear polyhedrosis virus DNA genome was digested with EcoRI endonuclease, these partial fragments were recombined into the pUC8 plasmid vector and transformed in E. coli JM 83 cell. The genome DNA has 24 EcoRI fragments and 12 fragments of them were subcloned. The four recombinants were named as eNP-O, eNP-Q, eNP-R and eNP-S. The expression of foregin gene of the recombinants was investigated by analysing protein patterns on the SDS-PAGE. The eNP-O, eNP-Q and eNP-R were expressed a different weight of protein as comparision with potypeptide bands of E. coli JM 83 host cell.

  • PDF

Novel Vectors for the Convenient Cloning and Expression of In Vivo Biotinylated Proteins in Escherichia coli

  • Cho, Eun-Wie;Park, Jung-Hyun;Na, Shin-Young;Kim, Kil-Lyong
    • BMB Reports
    • /
    • v.32 no.5
    • /
    • pp.497-501
    • /
    • 1999
  • Biotinylation of recombinant proteins is a powerful tool for the detection and analysis of proteins of interest in a large variety of assay systems. The recent development of in vivo biotinylation techniques in E. coli has opened new possibilities for the production of site-specifically biotinylated proteins without the need for further manipulation after the isolation of the recombinantly expressed proteins. In the present study, a novel vector set was generated which allows the convenient cloning and expression of proteins of interest fused with an N-terminal in vivo biotinylated thioredoxin (TRX) protein. These vectors were derived from the previously reported pBIOTRX vector into which was incorporated part of the pBluescript II+phagemid multiple cloning site (MCS), amplified by PCR using a pair of sophisticated oligonucleotide primers. The functionality of these novel vectors was examined in this system by recombinant expression of rat transforming growth factor-$\beta$. Western-blot analysis using TRX-specific antibodies or peroxidase-conjugated streptavidin confirmed the successful induction of the fusion protein and the in vivo conjugation of biotin molecules, respectively. The convenience of molecular subcloning provided by the MCS and the effective in vivo biotinylation of proteins of interest makes this novel vector set an interesting alternative for the production of biotinylated proteins.

  • PDF

A Novel Integrative Expression Vector for Sulfolobus Species

  • Choi, Kyoung-Hwa;Hwang, Sungmin;Yoon, Naeun;Cha, Jaeho
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.11
    • /
    • pp.1503-1509
    • /
    • 2014
  • With the purpose of facilitating the process of stable strain generation, a shuttle vector for integration of genes via a double recombination event into two ectopic sites on the Sulfolobus acidocaldarius chromosome was constructed. The novel chromosomal integration and expression vector pINEX contains a pyrE gene from S. solfataricus P2 ($pyrE_{sso}$) as an auxotrophic selection marker, a multiple cloning site with histidine tag, the internal sequences of malE and malG for homologous recombination, and the entire region of pGEM-T vector, except for the multiple cloning region, for propagation in E. coli. For stable expression of the target gene, an ${\alpha}$-glucosidase-producing strain of S. acidocaldarius was generated employing this vector. The malA gene (saci_1160) encoding an ${\alpha}$-glucosidase from S. acidocaldarius fused with the glutamate dehydrogenase ($gdhA_{saci}$) promoter and leader sequence was ligated to pINEX to generate pINEX_malA. Using the "pop-in" and "pop-out" method, the malA gene was inserted into the genome of MR31 and correct insertion was verified by colony PCR and sequencing. This strain was grown in YT medium without uracil and purified by His-tag affinity chromatography. The ${\alpha}$-glucosidase activity was confirmed by the hydrolysis of $pNP{\alpha}G$. The pINEX vector should be applicable in delineating gene functions in this organism.

Cloning and Heterologous Expression of Acetyl Xylan Esterase from Aspergillus ficuum

  • Jeong, Hye-Jong;Park, Seung-Mun;Yang, Mun-Sik;Kim, Dae-Hyeok
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.153-156
    • /
    • 2000
  • Xylan, the major hemicellulose component of many plants, occurs naturally in a partially acetylated form and lignin, the most resistant component in plant cell wall degradation, is also attached to ${\beta}-1,4-linked-D-xylose$ backbone through the ester linkage. Esterases are required to release the esterified substituent and acetyl esterases are important in the complete degradation of acetylated polysaccharides, like pectins and xylans. The gene(Axe) encoding acetyl xylan estarase(AXE) was isolated from genomic ${\lambda}$ library from Aspergillus ficuum. Nucleotide sequencing of the Axe gene indicated that the gene was separated with two intervening sequences and the amino acid sequence comparison revealed that it was closely related to that from A. awamori with the 92 % indentity. Heterologous expression of AXE was conducted by using YEp352 and Saccharomyces cerevisae 2805 as a vector and host expression system, respectively. The Axe gene was placed between GAL1 promoter and GAL7 terminator and then this recombinant vector was used to transform S. cerevisiae 2805 strain. Culture filtrate of the transformed yeast was assayed for the presence of AXE activity by spectrophotometry and, comparing with the host strain, four to five times of enzyme activity was detected in culture filtrate of transformed yeast.

  • PDF

Cloning of Bacillus amyloliquefaciens amylase gene using YEp 13 as a vector II. Expression of cloned amylase gene in Saccharomyces cerevisiae (YEp 13 vector를 이용한 Bacillus amyloliquefaciens amylase gene의 cloning II. Saccharomyces cerevisiae에서의 발현)

  • 김관필;서정훈
    • Microbiology and Biotechnology Letters
    • /
    • v.14 no.3
    • /
    • pp.209-212
    • /
    • 1986
  • $\alpha$-Amylase gene of Bacillus amyloliquetaciens was cloned on plasmid YEp13, S. cerevisiae-E. coli shuttle vector. Hybrid plasmid pTG17, carrying $\alpha$-amylase gene of B. amyloliquefaciens, was transformed to E. coli and the expression of it in yeast was investigated. This plasmid was unstable in E. coli and produced two minor plasmids, pTG17-1 and PTG17-2, which resulted from the segregation of it. Transformant of S. cerevisiae MC16 with pTG17-1 plasmid was not appeared on SD medium because of the Leu2 gene defection. S. cerevisiae could be transformed by the hybrid plasmid, and $\alpha$-amylase activity of the yeast transformant was detected by somogyi-Nelson method and agar diffusion method.

  • PDF

Cloning of Bacillus amyloliquefaciens amylase gene using YRp7 as a vector II. Expression of cloned amylase gene in Saccharomyces cerevisiae (YRp7 vector를 이용한 Bacillus amyloliquefaciens amylase gene의 cloning I I. Saccharomyces cerevisiae에서 발현)

  • 서정훈;김영호;전도연;배영석;홍순덕;이종태
    • Microbiology and Biotechnology Letters
    • /
    • v.14 no.3
    • /
    • pp.213-218
    • /
    • 1986
  • Hybrid plasmid pEA24, shuttle vector YRp7 carrying amylase gene of Bacillus amyloliquefaciens, was transformed to yeast Saccharomyces cerevisiae, and the expression of B. amyloliquefaciens amylase gene in yeast was investigated. The frequency of transformation to S. cerevisiae DBY747 with YRp7 was increased by treatment of 40% polyethylene glycol (MW 4, 000), PH 7.0, at 3$0^{\circ}C$, and by regeneration used 2% top agar. The amount of cellular amylase activity produced by S. cerevisiae containing pEA24 was 2% of that secreted from B. amyloliquefaciens, but in case of S. cerevisiae transformant, the amylase secreted was not detected. A comparison of genetic stability of pEA24 and YRp7 plasmids in yeast was carried out by cultivation of transformants in tryptophan-supplement-medium. The pEA24 plasmid was more unstable than YRp7 in S. cerevisiae. The size of pEA24 extracted from S. cerevisiae transformants was found to be identical with that from E. coli transformants by agarose gel electrophoresis.

  • PDF

Cloning and Expression of a Full-Length Glutamate Decarboxylase Gene from Lactobacillus plantarum

  • Park, Ki-Bum;Oh, Suk-Heung
    • Preventive Nutrition and Food Science
    • /
    • v.9 no.4
    • /
    • pp.324-329
    • /
    • 2004
  • In order to investigate the molecular mechanism of $\gamma$-aminobutyric acid (GABA) production in lactic acid bacteria, we cloned a glutamate decarboxylase (GAD) gene from Lactobacillus plantarum using polymerase chain reaction (PCR). One PCR product DNA was obtained and inserted into a TA cloning vector with a T7 promoter. The recombinant plasmid was used to transform E. coli. The insertion of the product was con­firmed by EcoRI digestion of the plasmid purified from the transformed E. coli. Nucleotide sequence analysis showed that the insert is a full-length Lactobacillus plantarum GAD and that the sequence is $100\%$ and $72\%$ identical to the regions of Lactobacillus plantarum GAD and Lactococcus lactis GAD sequences deposited in GenBank, accession nos: NP786643 and NP267446, respectively. The amino acid sequence deduced from the cloned Lactobacillus plantarum GAD gene showed $100\%$ and $68\%$ identities to the GAD sequences deduced from the genes of the NP786643 and NP267446, respectively. To express the GAD protein in E. coli, an expression vector with the GAD gene (pkk/GAD) was constructed and used to transform the UT481 E. coli strain and the expression was confirmed by analyzing the enzyme activity. The Lactobacillus plantarum GAD gene obtained may facilitate the study of the molecular mechanisms regulating GABA metabolism in lactic acid bacteria.