• Title/Summary/Keyword: clone library

Search Result 290, Processing Time 0.041 seconds

Bacterial Diversity in the Human Saliva from Different Ages

  • Kang, Jung-Gyu;Kim, Seong-Hwan;Ahn, Tae-Young
    • Journal of Microbiology
    • /
    • v.44 no.5
    • /
    • pp.572-576
    • /
    • 2006
  • To obtain primary idea on oral bacterium species that are generally present in periodotally healthy Koreans, the oral bacterial flora in the saliva of four periodontally healthy Koreans at different ages (5, 32, 35, 65) was investigated in this study. For this investigation, 16S rRNA gene clone libraries were generated from the saliva of the four healthy Koreans, and 50 clones were randomly selected from each saliva clone library and sequenced. Totally, 37 different kinds of bacterial 16S rRNA gene sequences were identified based on sequence homology search through GenBank database. The 37 kinds of saliva clone sequences were classified to 14 genera and 2 uncultured and 1 unidentified bacteria. Among the 14 identified genera, Streptococcus, Prevotella, and Veillollella were common genera, and Streptococcus was dominant genus that accounted for 7 different species. Among the seven Streptococcus species, S. salivarius appeared as the most common species. More numbers of species belonging to the genera Streptococcus and Prevotella was present in saliva from ages 32 and 35. While saliva from ages 5 and 65 showed more numbers of species belonging to the genera Rothia, including potential pathogenic species. Overall, saliva of a young child and a senior showed higher bacterial diversity than that of young adults.

Construction of an RNase P Ribozyme Library System for Functional Genomics Applications

  • Hong, Sun-Woo;Choi, Hyo-Jei;Lee, Young-Hoon;Lee, Dong-Ki
    • Genomics & Informatics
    • /
    • v.5 no.1
    • /
    • pp.6-9
    • /
    • 2007
  • An RNase P ribozyme library has been developed as a tool for functional genomics studies. Each clone of this library contains a random 18-mer and the sequence of M1 RNA, the catalytic subunit of RNase P. Repression of target gene expression is thus achieved by the complementary binding of mRNA to the random guide sequence and the successive target cleavage via M1 RNA. Cellular expression of the ribozyme expression was confirmed, and EGFP mRNA was used as a model to demonstrate that the RNase P ribozyme expression system can inhibit the target gene expression. The constructed RNase P ribozyme library has a complexity of $1.4\times10^7$. This novel library system should become a useful in functional genomics, to identify novel gene functions in mammalian cells.

Analysis of the Gene Expression by Laser Capture Microdissection(II) : Differential Gene Expression between Primordial and Primary Follicles (Laser Capture Microdissection을 이용한 유전자 발현 연구(II) : 원시난포와 1차난포 유전자 발현의 차이에 대한 분석)

  • 박창은;고정재;이숙환;차광렬;김격진;이경아
    • Development and Reproduction
    • /
    • v.6 no.2
    • /
    • pp.89-96
    • /
    • 2002
  • The present study was conducted to elucidate genes involved in the primordial-primary follicular transition. By using suppression subtractive hybridization, day1- and day5-subtracted cDNA libraries were obtained with the forward and reverse subtraction method, respectively. In toto, 357 clones were sequenced and analyzed by BLAST and RIKEN program. Sequences of 330 clones significantly matched database entries while 27 clones were novel. Forty-two and 47 genes with known functions were different between day1 and day5 ovaries. Four genes, GDF8, lats2, septin2, and wee1, from the day1 subtracted cDNA library, and 6 genes, HSP84, laminin2, MATER, MTi7, PTP, and wrn, from day5-subtracted cDNA library were chosen, and their differential expression was evaluated using RNAs from whole ovaries as well as captured primordial and primary follicles by laser captured microdissection. Results from the present study would provide insight for the future study on the mechanisms involved in primordial-primary follicle transition in the mouse in addition to the human ovary.

  • PDF

A Molecular Study of Rice Black-Streaked Dwarf Virus (벼 흑조위축병 바이러스의 분자생물학적 연구)

  • Park, Jong-Sug;Bae, Shin-Chyul;Kim, Young-Min;Paik, Young-Ki;Kim, Ju-Kon;Hwang, Young-Soo
    • Applied Biological Chemistry
    • /
    • v.37 no.3
    • /
    • pp.148-153
    • /
    • 1994
  • Rice black-streaked dwarf virus (RBSDV), a member of the plant reoviridae fijivirus group, causes a serious damage for rice production in Korea. To characterize the RBSDV genome, virus particles were produced by feeding of planthopper (Laodelphax striatellus F.) carring RBSDV to maize plants for 2 days. In $30{\sim}40$ days after feeding, the viral particles were purified from the infected maize roots by using $10{\sim}40%$ sucrose gradient centrifugation. After treatment of 10% SDS to remove the viral coat proteins, ten viral double-stranded RNAs were resolved in agrose gel electrophoresis. Total dsRNA was then used to synthesize cDNA by reverse transcriptase and a cDNA library was constructed in the ${\lambda}gt11$ vector. The phages that contain RBSDV cDNA fragments were selected by hybridizing with the random-primed probe prepared from RBSDV dsRNAs. After subcloning of several cDNA fragments into the pUC19 plasmid vector, one clone (pRV3) was chosen for sequencing. The pRV3 clone was shown to be located on the RBSDV genome fragment No.3 by RNA gel-blot analysis. Sequence analysis of the clone revealed that the pRV3 contains two partial open reading frames.

  • PDF

Molecular Cloning of Chitinase Genes Family from Serratia marcescens

  • Song, Young-Hwan;Kweon, Oh-Gun
    • Journal of fish pathology
    • /
    • v.6 no.2
    • /
    • pp.103-110
    • /
    • 1993
  • Total genomic DNA library of Serratia marcescens was prepared by inserting Sau3AI partial digesting fragments(above 5 kb) into the dephosphorylated BamHl site of pUC19. In primary screening, two colonies were selected by observing the halo around E. coli transformants grown on the swollen colloidal chitin media. Secondary screening was performed by soaking two colonies with a few drops of 4-methylumbelleliferryl N-acetyl-$\beta$-D-glucocosaminide(4-MuNGlcNAc). As 4-MuNGlcNAc is a specific, fluorogenic substrate for chitinase, the positive clones produce light fluorescence by the exposure under the long wave U.V. light(360 nm). From genomic DNA library derived from pUC19, we have isolated two different chitinase clones, pCH1(11.0Kb) and pCH2(7.5Kb), which show completely different restriction map to each other. The cross-hybridization of pCH1EA and pCH2 have not revealed any hybridization signals to each other.

  • PDF

Cloning of the Alkaline Phosphatase Gene from Kluyveromyces fragilis

  • Kim, Jong-Guk;Hwang, Seon-Kap;Kwon, Kaeg-Kyu;Nam, Joo-Hyun;Hong, Soon-Duck;Seu, Jung-Hwn
    • Journal of Microbiology and Biotechnology
    • /
    • v.2 no.4
    • /
    • pp.237-242
    • /
    • 1992
  • In order to clone the gene coding for alkaline phosphatase in the yeast Kluyveromyces fragilis, a genomic library was constructed using the yeast-E. coli shuttle vector pHN114 as a cloning vector. From the genomic library, a clone carrying the gene was isolated and the plasmid was designated as pSKH101. A restriction enzyme map was made using this plasmid. Subcloning experiments and complementation studies showed that alkaline phosphatase was active only in the original 3.1 kb insert. Southern hybridization analysis confirmed that the cloned DNA fragment was derived from K. fragilis genomic DNA. Using a minicell experiment, the product of the cloned gene was identified as a protein with a molecular weight of 63 KDa. A 0.6 kb HindIII fragment, which showed promoter activity, was isolated using the E. coli promoter-probe vector pKO-1.

  • PDF

Isolation and Characterization of a Cdna ( Fp 1 ) Encoding the Iron Storage Protein in Red Pepper ( Capsicum annuum L. )

  • Kim, Ho-Young;Lee, Young-Ok;Noh, Ill-Sup;Kang, Hee-Wan;Kameya, Toshiaki;Saito, Takashi;Kang, Kwon-Kyoo
    • Plant Resources
    • /
    • v.1 no.1
    • /
    • pp.13-21
    • /
    • 1998
  • A cDNA Fragment encoding iron storage protrin generated by polymerase chain reaction(PCR) using highly conserved regions of ferritin related genes were used to sereen a red pepper cDNA library. cDNA clone was designated as Fp1. Fp1 clone contatines a 5' nontranslated region of 51dp containing stop conds. Down stream from 5' UTP. an open reading frame of 750bp was observed. followed by a 3' UTR of 272bp. The deduces amino acid sequence of red pepper protein(Fp1) showed 84%, 48% and 36% identity with soybean(SolC). human(HuL H) and horse spleen(HoS-L) ferritin mRNA accumulation in response to iron. Ferritin mRNA accumulation was transient and particularly abundant in leaves. reaching a maxmum at 12h. The level of ferritin mRNA in roots was affected to a lesser extent than in leaves.

  • PDF

Diversity of Butyrivibrio Group Bacteria in the Rumen of Goats and Its Response to the Supplementation of Garlic Oil

  • Zhu, Zhi;Hang, Suqin;Mao, Shengyong;Zhu, Weiyun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.2
    • /
    • pp.179-186
    • /
    • 2014
  • This study aimed to investigate the diversity of the Butyrivibrio group bacteria in goat rumen and its response to garlic oil (GO) supplementation as revealed by molecular analysis of cloned 16S rRNA genes. Six wethers fitted with ruminal fistulas were assigned to two groups for a cross-over design with 28-d experimental period and 14-d interval. Goats were fed a basal diet without (control) or with GO ruminal infusion (0.8 g/d). Ruminal contents were used for DNA extraction collected before morning feeding on d 28. A total bacterial clone library was firstly constructed by nearly full-length 16S rRNA gene cloned sequences using universal primers. The resulting plasmids selected by Butyrivibrio-specific primers were used to construct a Butyrivibrio group-specific bacterial clone library. Butyrivibrio group represented 12.98% and 10.95% of total bacteria in control and GO group, respectively. In libraries, clones were classified to the genus Pseudobutyrivibrio, Butyrivibrio and others within the family Lachnospiraceae. Additionally, some specific clones were observed in GO group, being classified to the genus Ruminococcus and others within the family Ruminococcaceae. Based on the criterion that the similarity was 97% or greater with database sequences, there were 29.73% and 18.42% of clones identified as known isolates (i.e. B. proteoclasticus and Ps. ruminis) in control and GO groups, respectively. Further clones identified as B. fibrisolvens (5.41%) and R. flavefaciens (7.89%) were specifically found in control and GO groups, respectively. The majority of clones resembled Ps. ruminis (98% to 99% similarity), except for Lachnospiraceae bacteria (87% to 92% similarity) in the two libraries. The two clone libraries also appeared different in Shannon diversity index (control 2.47 and GO group 2.91). Our results indicated that the Butyrivibrio group bacteria had a complex community with considerable unknown species in the goat rumen.

Characterization of Methanotrophic Communities in Soils from Regions with Different Environmental Settings (다양한 환경조건을 가진 토양의 메탄산화세균 군집 특성)

  • Kim, Tae-Gwan;Park, Hyun-Jung;Lee, Sang-Hyon;Kim, Pyeong-Wha;Moon, Kyung-Eun;Cho, Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.2
    • /
    • pp.152-156
    • /
    • 2012
  • Methanotrophic communities from freshwater wetland (FW), seawater wetland (SW), forest (FS), and landfill soils (LS) around Seoul of South Korea, were characterized using comparative sequence analyses of clone libraries. Proportions of Methylocaldum, Methlyococcus and Methylosinus were found to be greater in FW and SW, while Methylobacter and Methylomonas were more notable in FS and Methylocystis and Methylomicrobium more prominent in LS. Lag periods behind the initiation of methane oxidation significantly varied amongst the soils. Methane oxidation rates were greater in $FW{\geq}LS{\geq}SW>FS$ (p<0.05). Thus, the environmental setting is a significant factor influencing the communities and capabilities of methanotrophs.