• Title/Summary/Keyword: climatic variability

Search Result 80, Processing Time 0.025 seconds

The Change of The Average Discomfort Index from June to September during The Past 10 Years (한반도의 여름철 불쾌지수 특성 분석)

  • Jang, You-Jung;Heo, Hye-Sook;Kim, Baek-Jo;Kim, Seong-Kyoun;Hong, Gi-Man;Lee, Woo-Kyun
    • Journal of Climate Change Research
    • /
    • v.3 no.2
    • /
    • pp.89-100
    • /
    • 2012
  • This study analyzes spatio-temporal variability of discomfort index for summer the during the past ten years(2001~2010) in the Korean Peninsula, and considers the application possibility of discomfort index as a preliminary data for various phenomenon of society based on the analysis. Discomfort index defined as daily representative value was estimated using hourly temperature and humidity data which are observed 60 weather stations managed by Korea Meteorological Administration. The result indicates that the discomfort index in summer keeps the level at which one feels unpleasant, and the level increased steadily as temperature is rising. And discomfort index in 3 pm and on August are the highest during the day and year. Gangwon-do have shown the lowest discomfort index among the provinces. Variability analysis of discomfort index due to climate changes can be used for making policies in various fields such as industry and public health field.

Alternative Energy - Environment Safety

  • Kurnaz, Sefer;Rustamov, Rustam B.;Zeynalov, Ismayil
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.1
    • /
    • pp.91-97
    • /
    • 2009
  • It is undertaken systematization of results of satellite and ground observation parameters characterizing a current condition and climatic variability of two selected geographical areas. One of them covers territory of Azerbaijan and another covers a wide area of Caspian See region. Average values and mean square deviations of following values are investigated: outgoing long wave radiation during a day and night (in nebulosity and cloudless). absorbed within a day of the stream of a sunlight of the system in "a terrestrial surface-atmosphere". degree of a covering by clouds of the selected areas during a day and at night, ground temperature values of air. pressure and speed of a wind. Monthly average values of corresponding parameters create a basis of suggested investigations. It has been presented features of a time course of investigated parameters for each month and year in the whole due to the continuously observations since 1982-2000. The scientific problem consists that there are no existed models which authentically would be cover the main aspects of a realities specified changes: they are identified by economic activities. growth of the population and other features of development of a human society or internal fluctuations of biogeophysical/climatic system. Possibilities of predictability of biosphere and climate changes depend on available timely supervision. adequacy of construction of appropriate models. understanding of mechanisms of direct and feedback influences in such complicated systems.

Local Climate Mediates Spatial and Temporal Variation in Carabid Beetle Communities on Hyangnobong, Korea

  • Park, Yong Hwan;Jang, Tae Woong;Jeong, Jong Cheol;Chae, Hee Mun;Kim, Jong Kuk
    • Journal of Forest and Environmental Science
    • /
    • v.33 no.3
    • /
    • pp.161-171
    • /
    • 2017
  • Global environmental changes have the capacity to make dramatic alterations to floral and faunal composition, and elucidation of the mechanism is important for predicting its outcomes. Studies on global climate change have traditionally focused on statistical summaries within relatively wide scales of spatial and temporal changes, and less attention has been paid to variability in microclimates across spatial and temporal scales. Microclimate is a suite of climatic conditions measured in local areas near the earth's surface. Environmental variables in microclimatic scale can be critical for the ecology of organisms inhabiting there. Here we examine the effect of spatial and temporal changes in microclimates on those of carabid beetle communities in Hyangnobong, Korea. We found that climatic variables and the patterns of annual changes in carabid beetle communities differed among sites even within the single mountain system. Our results indicate the importance of temporal survey of communities at local scales, which is expected to reveal an additional fraction of variation in communities and underlying processes that has been overlooked in studies of global community patterns and changes.

A Characteristic of Wintertime Snowfall and Minimum Temperature with Respect to Arctic Oscillation in South Korea During 1979~2011 (1979~2011년, 북극진동지수 측면에서의 겨울철 남한지역 신적설과 최저 온도 특성)

  • Roh, Joon-Woo;Lee, Yong Hee;Choi, Reno K.Y.;Lee, Hee Choon
    • Atmosphere
    • /
    • v.24 no.1
    • /
    • pp.29-38
    • /
    • 2014
  • A characteristic of snowfall and minimum temperature variability in South Korea with respect to the variability of Arctic Oscillation (AO) was investigated. The climatic snowfall regions of South Korea based on daily new fresh snowfall data of 59 Korea Meteorological Administration (KMA) stations data corresponding to the sign of AO index during December to February 1979~2011 were classified. Especially, the differences between snowfalls of eastern regions and that of western regions in South Korea were seen by each mean 1000hPa geopotential height fields, which is one of physical structure, for the selected cases over the East Asia including the Korean Peninsula. Daily minimum temperature variability of 59 KMA station data and daily AO index during the same period were investigated using Cyclo-stationary empirical orthogonal function (CSEOF) analysis. The first CSEOF of wintertime daily AO index and that of minimum temperature of 59 KMA stations explain 33% and 66% of total variability, respectively. Correlation between principal component time series corresponding to the first CSEOF of AO index and that of temperature at the period of 1990s is over about -0.7 when that of AO index leads about 40 days.

Quantification of future climate uncertainty over South Korea using eather generator and GCM

  • Tanveer, Muhammad Ejaz;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.154-154
    • /
    • 2018
  • To interpret the climate projections for the future as well as present, recognition of the consequences of the climate internal variability and quantification its uncertainty play a vital role. The Korean Peninsula belongs to the Far East Asian Monsoon region and its rainfall characteristics are very complex from time and space perspective. Its internal variability is expected to be large, but this variability has not been completely investigated to date especially using models of high temporal resolutions. Due to coarse spatial and temporal resolutions of General Circulation Models (GCM) projections, several studies adopted dynamic and statistical downscaling approaches to infer meterological forcing from climate change projections at local spatial scales and fine temporal resolutions. In this study, stochastic downscaling methodology was adopted to downscale daily GCM resolutions to hourly time scale using an hourly weather generator, the Advanced WEather GENerator (AWE-GEN). After extracting factors of change from the GCM realizations, these were applied to the climatic statistics inferred from historical observations to re-evaluate parameters of the weather generator. The re-parameterized generator yields hourly time series which can be considered to be representative of future climate conditions. Further, 30 ensemble members of hourly precipitation were generated for each selected station to quantify uncertainty. Spatial map was generated to visualize as separated zones formed through K-means cluster algorithm which region is more inconsistent as compared to the climatological norm or in which region the probability of occurrence of the extremes event is high. The results showed that the stations located near the coastal regions are more uncertain as compared to inland regions. Such information will be ultimately helpful for planning future adaptation and mitigation measures against extreme events.

  • PDF

A Study on Characteristics of Climate Variability and Changes in Weather Indexes in Busan Since 1904 (1904년 이래의 부산 기후 변동성 및 생활기상지수들의 기후변화 특성 연구)

  • Ha-Eun Jeon;Kyung-Ja Ha;Hye-Ryeom Kim
    • Atmosphere
    • /
    • v.33 no.1
    • /
    • pp.1-20
    • /
    • 2023
  • Holding the longest observation data from April 1904, Busan is one of the essential points to understand the climate variability of the Korean Peninsula without missing data since implementing the modern weather observation of the South Korea. Busan is featured by coastal areas and affected by various climate factors and fluctuations. This study aims to investigate climate variability and changes in climatic variables, extremes, and several weather indexes. The statistically significant change points in daily mean rainfall intensity and temperature were found in 1964 and 1965. Based on the change point detection, 117 years were divided into two periods for daily mean rainfall intensity and temperature, respectively. In the long-term temperature analysis of Busan, the increasing trend of the daily maximum temperature during the period of 1965~2021 was larger than the daily mean temperature and the daily minimum temperature. Applying Ensemble Empirical Mode Decomposition, daily maximum temperature is largely affected by the decadal variability compared to the daily mean and minimum temperature. In addition, the trend of daily precipitation intensity from 1964~2021 shows a value of about 0.50 mm day-1, suggesting that the rainfall intensity has increased compared to the preceding period. The results in extremes analysis demonstrate that return values of both extreme temperatures and precipitation show higher values in the latter than in the former period, indicating that the intensity of the current extreme phenomenon increases. For Wet-Bulb Globe Temperature (effective humidity), increasing (decreasing) trend is significant in Busan with the second (third)-largest change among four stations.

Past and Present Meteorological Stress in Crop Production and Its Significance (농작물의 기상재해와 대책)

  • Eun-Woong Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.27 no.4
    • /
    • pp.291-295
    • /
    • 1982
  • The biosphere of the earth is not only about to overpass the limit to meet the food demand of the world but also the stability of its food production has been also jeopardized by the disasters and pests, especially by the unpredictable weather disasters. In addition the agricultural and industrial pollution against biosphere aggravates the unstability of agricultural production and constitutes a threat in securing the food of the world. In Korea the yield level of crops has been greatly enhanced by the improved agrotechnologies and varietal improvement, but the yield variability due to unfavorable weather events and pests remained unchanged with the change in time. Among weather-related disasters the drought and flood damages has occurred most frequently and impacted most greatly on the agricultural production and its stability. During last decade (1970-l980) the rice production experienced the average annual loss of 0.544 million metric ton which was composed of 0.21 million M/T by climatic disaster, 0.21 million M/T by disease and 0.12 million M/T by insects, and the annual loss of upland crop production from climatic disasters amounted to 0.06 million metric tons. Especially in 1980, the global climatic disasters due to cold or hot temperature endangered the agricultural production all over the world and also the rice production of Korea recorded the unprecedented yield reduction of about 30 percent due to cool summer weather. Nowadays, the unusual weather conditions are prevaling throughout the world, and agro-meteologists predict that the unpredictable cool summer and drought will often attack the rice and other crops in 1980's. To meet the coming weather unstability and to secure the stable crop production, multilateral efforts should be rendered. Therefore, the Korea Society of Crop Science, which commemorates the 20th anniversary of its founding, prepared the symposium on Meteological Stress in Crop Production and its Countermeasures to discuss the decrease in agricultural production due to weather-related disasters and to devise the multilateral counter-measures against the unfavorable weather events.

  • PDF

Assessing the Performance of CMIP5 GCMs for Various Climatic Elements and Indicators over the Southeast US (다양한 기후요소와 지표에 대한 CMIP5 GCMs 모델 성능 평가 -미국 남동부 지역을 대상으로-)

  • Hwang, Syewoon
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.11
    • /
    • pp.1039-1050
    • /
    • 2014
  • The goal of this study is to demonstrate the diversity of model performance for various climatic elements and indicators. We evaluated the skills of the most advanced 17 General Circulation Models (GCMs) i.e., CMIP5 (Climate Model Inter-comparison project, phase 5) climate models in reproducing retrospective climatology from 1950 to 2000 over the Southeast US for the key climatic elements important in the hydrological and agricultural perspectives (i.e., precipitation, maximum and minimum temperature, and wind speed). The biases of raw CMIP5 GCMs were estimated for 16 different climatic indicators that imply mean climatology, temporal variability, extreme frequency, etc. using a grid-based observational dataset as reference. Based on the error (RMSE) and correlation (R) of GCM outputs, the error-based GCM ranks were assigned on average over the indicators. Overall, the GCMs showed much better accuracy in representing mean climatology of temperature comparing to other elements whereas few GCM showed acceptable skills for precipitation. It was also found that the model skills and ranks would be substantially different by the climatic elements, error statistics applied for evaluation, and indicators as well. This study presents significance of GCM uncertainty and the needs of considering rational strategies for climate model evaluation and selection.

Exploring the factors responsible for variation in streamflow using different Budyko-base functions

  • Shah, Sabab Ali;Jehanzaib, Muhammad;Kim, Min Ji;Kim, Tae-Woong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.140-140
    • /
    • 2022
  • Recently an accurate quantification of streamflow under various climatological and anthropogenic factors and separation of their relative contribution remains challenging, because variation in streamflow may result in hydrological disasters. In this study, we evaluated the factors responsible for variation in streamflow in Korean watersheds, quantified separately their contribution using different Budyko-based functions, and identified hydrological breakpoint points. After detecting that the hydrological break point in 1995 and time series were divided into natural period (1966-1995), and disturbed period (1996-2014). During the natural period variation in climate tended to increase change in streamflow. However, in the disturbed period both climate variation and anthropogenic activities tended to increase streamflow variation in the watershed. Subsequently, the findings acquired from different Budyko-based functions were observed sensitive to selection of function. The variation in streamflow was observed in the response of change in climatic parameters ranging 46 to 75% (average 60%). The effects of anthropogenic activities were observed less compared to climate variation accounts 25 to 54% (average 40%). Furthermore, the relative contribution was observed to be sensitive corresponding to Budyko-based functions utilized. Moreover, relative impacts of both factors have capability to enhance uncertainty in the management of water resources. Thus, this knowledge would be essential for the implementation of water management spatial and temporal scale to reduce the risk of hydrological disasters in the watershed.

  • PDF

Spatio-Temporal Variability of Temperature and Precipitation in Seoul

  • Choi, Hyun-Ah;Lee, Woo-Kyun;Kim, So-Ra;Kwak, Han-Bin
    • Spatial Information Research
    • /
    • v.16 no.4
    • /
    • pp.467-478
    • /
    • 2008
  • This study analyzes the spatial and temporal variability of temperature ($^{\circ}C$) and precipitation (mm) in Seoul, Korea. The temperature and precipitation data were measured at 31 automatic weather stations (AWSs) in Seoul for 10 years from 1997 to 2006. In this study, inverse distance squared weighting (IDSW) was applied to interpolate the non-measured spaces. To estimate the temperature and precipitation variability, the mean values and frequencies of hot and cold days were examined. The maximum and minimum temperatures were $32.80^{\circ}C$ in 1999 and $-19.94^{\circ}C$ in 2001, respectively. The year 2006 showed the highest frequency of hot temperatures with 79 hot days, closely followed by 2004 and 2005. The coldest year was in 2001 with 105 cold days. The annual mean temperature and precipitation increased by about $1^{\circ}C$ and 483mm during the 10-year period, respectively. The temperature variability differed between high-elevation forested areas and low-elevation residential areas. However, the precipitation variability showed little relation with the topography and land use patterns.

  • PDF