• Title/Summary/Keyword: climatic conditions

Search Result 533, Processing Time 0.024 seconds

Pollution Cycle Method with NSDD Contaminant (불용성 오손물을 이용한 오손주기시험법)

  • Lee, Won-Yeong;Choi, Nam-Ho;Park, Gang-Sik;Han, Sang-Ok
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1481-1483
    • /
    • 2001
  • There is a wide climatic difference between Korea and foreign countries. Thus, the pollution cycle method, based on the climatic condition of Korea, is needed to evaluate the electrical properties of outdoor insulators. We make a analysis on the cycle methods of foreign countries, climatic conditions of Korea and failure data to make the cycle method. From the result, we can design a good pollution cycle method to evaluate the electrical properties of outdoor insulators.

  • PDF

On the Distribution of Beech(Fagus, Fagaceae) and Beech-Dominated Forests in the Northern Hemisphere (북반구의 너도밤나무와 너도밤나무림의 분포에 관하여)

  • Yim, Yang-Jai
    • The Korean Journal of Ecology
    • /
    • v.6 no.3
    • /
    • pp.153-166
    • /
    • 1983
  • The distribution of beech species (Fagus) and beech-dominated forests along climatic gradients in the Northern Hemisphere was studied by use of taxonomic and ecological literature. The genus Fagus as a whole occurs over the range of 4.5 to 20.0。C mean annual temperature and 600 to 1000 mm in lower limit, mean annual precipitation. At the higher end of the temperature range, beech occurs in zones with relatively high growing-season precipitation. Edaphically, beech species and beech-dominated forests tend to occur on mesic, moderately fertile sites. Beech-dominated forests occur in a limited portion of the climatic range of the genus with sensitive responses to other environmental factors. The distributional range of beech-dominated forests on a global scale depends more on climatic factors and geological events than on soil conditions or other factors, summarizing the facts obtained by many researchers on beech dominated forests.

  • PDF

Leakage Current Properties Analysis of Outdoor Insulator on Climatic.Environmental Factor (기후.환경 인자에 의한 옥외 절연물의 누설전류 특성 분석)

  • Lee, Won-Yeong;Shim, Kyu-Il;Han, Sang-Ok;Park, Gang-Sik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.27-30
    • /
    • 2002
  • In this paper, we were investigated leakage current properties of outdoor insulator on climatic environmental factor. Contamination is one of the most important factor to determine the performance of insulator. Thus, it is very important to exam the contamination degree on the outdoor insulator. There are many limits, such as reliability of data, interval of measurement and similarity of environmental conditions, in conventional method. So, we measured phase and leakage current of outdoor insulator using the temperature & humidity chamber. In this investigation, phase difference was measured to compare the variance of phase difference with the contamination degree and relative humidity.

  • PDF

Development of a Monitoring Technique of Dryness and Wetness in Watershed using Climatic Water Budget (기후학적 물수지에 의한 유역의 건조 및 습윤 상황 감시 기법 개발)

  • Shin, Sha-Chul;Hwang, Man-Ha;Ko, Ick-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.2
    • /
    • pp.173-184
    • /
    • 2008
  • Climatic water balance has been applied to obtain quantity of various hydrologic components. Hydrologic information is estimated by comparison between rainfall and evapotranspiration under complex terrain condition. Water deficit is defined as that subtraction of actual supply from climatic demand. The water deficit will occur, when monthly evapotranspiration exceed monthly rainfall. Contrary water surplus is defined as that surplus water after meeting the demand by plants. The water surplus will be occurred when monthly rainfall exceeds monthly evapotranspiration. Finally, the discrete moisture indices were calculated and mapped for the whole watershed to estimate dryness and wetness status using the climatic water balance approach. The result of this study can properly interpret the real drought and non drought. Based upon the results, it can be concluded that the climatic water balance model is useful to monitor water conditions for the watershed.

Climate Change Impact Assessment of Abies nephrolepis (Trautv.) Maxim. in Subalpine Ecosystem using Ensemble Habitat Suitability Modeling (서식처 적합모형을 적용한 고산지역 분비나무의 기후변화 영향평가)

  • Choi, Jae-Yong;Lee, Sang-Hyuk
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.21 no.1
    • /
    • pp.103-118
    • /
    • 2018
  • Ecosystems in subalpine regions are recognized as areas vulnerable to climatic changes because rainfall and the possibility of flora migration are very low due to the characteristics of topography in the regions. In this context, habitat niche was formulated for representative species of arbors in subalpine regions in order to understand the effects of climatic changes on alpine arbor ecosystems. The current potential habitats were modeled as future change areas according to the climatic change scenarios. Based on the growth conditions and environmental characteristics of the habitats, the study was conducted to identify direct and indirect causes affecting the habitat reduction of Abies nephrolepis. Diverse model algorithms for explanation of the relationship between the emergence of biological species and habitat environments were reviewed to construct the environmental data suitable for the six models(GLM, GAM, RF, MaxEnt, ANN, and SVM). Weights determined through TSS were applied to the six models for ensemble in an attempt to minimize the uncertainty of the models. Based on the current climate determined by averaging the climates over the past 30years(1981~2010) and the HadGEM-RA model was applied to fabricate bioclimatic variables for scenarios RCP 4.5 and 8.5 on the near and far future. The results of models of the alpine region tree species studied were put together and evaluated and the results indicated that a total of eight national parks such as Mt. Seorak, Odaesan, and Hallasan would be mainly affected by climatic changes. Changes in the Baekdudaegan reserves were analyzed and in the results, A. nephrolepis was predicted to be affected the most in the RCP8.5. The results of analysis as such are expected to be finally utilizable in the survey of biological species in the Korean peninsula, restoration and conservation strategies considering climatic changes as the analysis identified the degrees of impacts of climatic changes on subalpine region trees in Korean peninsula with very high conservation values.

The Impact of Abrupt Climate Change on the Marine Ecosystem in the East Sea

  • Shin, Im-Chul;Yi, Hi-Il;Chung, Hyo-Sang;Kwon, Won-Tae;Chun, Jong-Hwa;Oh, Hyun-Taek
    • The Korean Journal of Quaternary Research
    • /
    • v.17 no.2
    • /
    • pp.1-7
    • /
    • 2003
  • Environmental changes caused by the abrupt climatic change are one of the important issues in the scientific community. In the East Sea, abrupt climatic shift, called Younger Dryas, is identified. The age of the Younger Dryas cold episode occurred at 11.2 ka. Overall, changes in circulation and bottom water conditions occurred during the Younger Dryas cold episode in the study area. Especially, climatic transition from meltwater spike to the Younger Dryas cold episode is characterized by significant shifts of oxygen isotope values, the coiling ratios of Neogloboquadrina pachyderma, and the planktonic foraminifers abundances. The impact of abrupt climate change on the ecosystem is very significant. In the East Sea, the calcium carbonate secreting organism(foraminifers) is replaced by silicon dioxide secreting organisms(diatom, radiolarian) after the abrupt and severe cold climatic event. Based on the Doctrine of Uniformitarianism, at least climate change for the next 100 years would be severely influence on the marine ecosystem.

  • PDF

Statistical estimation of crop yields for the Midwestern United States using satellite images, climate datasets, and soil property maps

  • Kim, Nari;Cho, Jaeil;Hong, Sungwook;Ha, Kyung-Ja;Shibasaki, Ryosuke;Lee, Yang-Won
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.4
    • /
    • pp.383-401
    • /
    • 2016
  • In this paper, we described the statistical modeling of crop yields using satellite images, climatic datasets, soil property maps, and fertilizer data for the Midwestern United States during 2001-2012. Satellite images were obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS), and climatic datasets were provided by the Parameter-elevation Regressions on Independent Slopes Model (PRISM) Climate Group. Soil property maps were derived from the Harmonized World Soil Database (HWSD). Our multivariate regression models produced quite good prediction accuracies, with differences of approximately 8-15% from the governmental statistics of corn and soybean yields. The unfavorable conditions of climate and vegetation in 2012 could have resulted in a decrease in yields according to the regression models, but the actual yields were greater than predicted. It can be interpreted that factors other than climate, vegetation, soil, and fertilizer may be involved in the negative biases. Also, we found that soybean yield was more affected by minimum temperature conditions while corn yield was more associated with photosynthetic activities. These two crops can have different potential impacts regarding climate change, and it is important to quantify the degree of the crop sensitivities to climatic variations to help adaptation by humans. Considering the yield decreases during the drought event, we can assume that climatic effect may be stronger than human adaptive capacity. Thus, further studies are demanded particularly by enhancing the data regarding human activities such as tillage, fertilization, irrigation, and comprehensive agricultural technologies.

Thermal and subjective responses by sun hats for farmer in a hot climatic chamber (서열 환경에서 농작업 모자 착용에 따른 체온 조절 및 주관적 반응)

  • 김명주;최정화
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.5
    • /
    • pp.713-722
    • /
    • 2004
  • This study examined the effects of two kinds of functional sun hats through a head-manikin test and a climatic chamber trial for farm workers in summer. Experiment was composed of four conditions. The first condition was the condition without any hat (Control). The second was the condition with a sun hat on the market (Hat A). The third was the condition with a functional sun hat made of reflective fabric (Hat B). The last was the condition with a functional sun hat having a ventilating structure as well as reflective fabric (Hat C). For the subjects in the climatic chamber trials, 12 healthy males volunteered. Air temperature, relative humidity and globe temperature in the chamber was maintained at $33{\pm}0.5^{\circ}C,\;65{\pm}5%RH\;and\;39{\pm}1^{\circ}C\;(WBGT\;33^{\circ}C)$. Subjects did a simulated red pepper-work (50-min work and 10-min rest, twice repetition) for 120 min. As the result of head-manikin test, the surface temperature on middle of back-neck was the lowest in Hat B of four conditions and the surface temperature on top of head was the lowest in Hat C. As the result of climatic chamber trials, there were apparent differences between with (Hat A, Hat B, Hat C) and without a sun hat (Control). In rectal temperature ($T_{re}$), mean skin temperature ($\={T}_{sk}$), heart rate (HR), total sweat rate (TSR), The physiological heat strain was less in the condition with hats than in the condition without a sun hat. As the increasing rate in Tre, Hat B is the most effective hat for alleviation heat strain. As the subjective responses, Hat B was the most effective hat for thermal comfort even though the difference was not significant. Hat C was less effective than Hat B and the reason might be the increase of weight due to inserting the ventilating structure.

Comparison of reference evapotranspiration estimation methods with limited data in South Korea

  • Jeon, Min-Gi;Nam, Won-Ho;Hong, Eun-Mi;Hwang, Seonah;Ok, Junghun;Cho, Heerae;Han, Kyung-Hwa;Jung, Kang-Ho;Zhang, Yong-Seon;Hong, Suk-Young
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.1
    • /
    • pp.137-149
    • /
    • 2019
  • Accurate estimation of reference evapotranspiration (RET) is important to quantify crop evapotranspiration for sustainable water resource management in hydrological, agricultural, and environmental fields. It is estimated by different methods from direct measurements with lysimeters, or by many empirical equations suggested by numerous modeling using local climatic variables. The potential to use some such equations depends on the availability of the necessary meteorological parameters for calculating the RET in specific climatic conditions. The objective of this study was to determine the proper RET equations using limited climatic data and to analyze the temporal and spatial trends of the RET in South Korea. We evaluated the FAO-56 Penman-Monteith equation (FAO-56 PM) by comparing several simple RET equations and observed small fan evaporation. In this study, the modified Penman equation, Hargreaves equation, and FAO Penman-Monteith equation with missing solar radiation (PM-Rs) data were tested to estimate the RET. Nine weather stations were considered with limited climatic data across South Korea from 1973 - 2017, and the RET equations were calculated for each weather station as well as the analysis of the mean error (ME), mean absolute error (MAE), and root mean square error (RMSE). The FAO-56 PM recommended by the Food Agriculture Organization (FAO) showed good performance even though missing solar radiation, relative humidity, and wind speed data and could still be adapted to the limited data conditions. As a result, the RET was increased, and the evapotranspiration rate was increased more in coastal areas than inland.

Comparing building performance of supermarkets under future climate change: UK case study

  • Agha Usama Hasan;Ali Bahadori-Jahromi;Anastasia Mylona;Marco Ferri;Hexin Zhang
    • Advances in Energy Research
    • /
    • v.8 no.1
    • /
    • pp.73-93
    • /
    • 2022
  • Focus on climate change and extreme weather conditions has received considerable attention in recent years. Civil engineers are now focusing on designing buildings that are more eco-friendly in the face of climate change. This paper describes the research conducted to assess the impact of future climate change on energy usage and carbon emissions in a typical supermarket at multiple locations across the UK. Locations that were included in the study were London, Manchester, and Southampton. These three cities were compared against their building performance based on their respective climatic conditions. Based on the UK Climatic Projections (UKCP09), a series of energy modelling simulations which were provided by the Chartered Institute of Building Service Engineers (CIBSE) were conducted on future weather years for this investigation. This investigation ascertains and quantifies the annual energy consumption, carbon emissions, cooling, and heating demand of the selected supermarkets at the three locations under various climatic projections and emission scenarios, which further validates annual temperature rise as a result of climatic variation. The data showed a trend of increasing variations across the UK as one moves southwards, with London and Southampton at the higher side of the spectrum followed by Manchester which has the least variability amongst these three cities. This is the first study which investigates impact of the climate change on the UK supermarkets across different regions by using the real case scenarios.