• Title/Summary/Keyword: climate-change

Search Result 6,459, Processing Time 0.037 seconds

A study on the derivation and evaluation of flow duration curve (FDC) using deep learning with a long short-term memory (LSTM) networks and soil water assessment tool (SWAT) (LSTM Networks 딥러닝 기법과 SWAT을 이용한 유량지속곡선 도출 및 평가)

  • Choi, Jung-Ryel;An, Sung-Wook;Choi, Jin-Young;Kim, Byung-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1107-1118
    • /
    • 2021
  • Climate change brought on by global warming increased the frequency of flood and drought on the Korean Peninsula, along with the casualties and physical damage resulting therefrom. Preparation and response to these water disasters requires national-level planning for water resource management. In addition, watershed-level management of water resources requires flow duration curves (FDC) derived from continuous data based on long-term observations. Traditionally, in water resource studies, physical rainfall-runoff models are widely used to generate duration curves. However, a number of recent studies explored the use of data-based deep learning techniques for runoff prediction. Physical models produce hydraulically and hydrologically reliable results. However, these models require a high level of understanding and may also take longer to operate. On the other hand, data-based deep-learning techniques offer the benefit if less input data requirement and shorter operation time. However, the relationship between input and output data is processed in a black box, making it impossible to consider hydraulic and hydrological characteristics. This study chose one from each category. For the physical model, this study calculated long-term data without missing data using parameter calibration of the Soil Water Assessment Tool (SWAT), a physical model tested for its applicability in Korea and other countries. The data was used as training data for the Long Short-Term Memory (LSTM) data-based deep learning technique. An anlysis of the time-series data fond that, during the calibration period (2017-18), the Nash-Sutcliffe Efficiency (NSE) and the determinanation coefficient for fit comparison were high at 0.04 and 0.03, respectively, indicating that the SWAT results are superior to the LSTM results. In addition, the annual time-series data from the models were sorted in the descending order, and the resulting flow duration curves were compared with the duration curves based on the observed flow, and the NSE for the SWAT and the LSTM models were 0.95 and 0.91, respectively, and the determination coefficients were 0.96 and 0.92, respectively. The findings indicate that both models yield good performance. Even though the LSTM requires improved simulation accuracy in the low flow sections, the LSTM appears to be widely applicable to calculating flow duration curves for large basins that require longer time for model development and operation due to vast data input, and non-measured basins with insufficient input data.

GMI Microwave Sea Surface Temperature Validation and Environmental Factors in the Seas around Korean Peninsula (한반도 주변해 GMI 마이크로파 해수면온도 검증과 환경적 요인)

  • Kim, Hee-Young;Park, Kyung-Ae;Kwak, Byeong-Dae;Joo, Hui-Tae;Lee, Joon-Soo
    • Journal of the Korean earth science society
    • /
    • v.43 no.5
    • /
    • pp.604-617
    • /
    • 2022
  • Sea surface temperature (SST) is a key variable that can be used to understand ocean-atmosphere phenomena and predict climate change. Satellite microwave remote sensing enables the measurement of SST despite the presence of clouds and precipitation in the sensor path. Therefore, considering the high utilization of microwave SST, it is necessary to continuously verify its accuracy and analyze its error characteristics. In this study, the validation of the microwave global precision measurement (GPM)/GPM microwave imager (GMI) SST around the Northwest Pacific and Korean Peninsula was conducted using surface drifter temperature data for approximately eight years from March 2014 to December 2021. The GMI SST showed a bias of 0.09K and an average root mean square error of 0.97K compared to the actual SST, which was slightly higher than that observed in previous studies. In addition, the error characteristics of the GMI SST were related to environmental factors, such as latitude, distance from the coast, sea wind, and water vapor volume. Errors tended to increase in areas close to coastal areas within 300 km of land and in high-latitude areas. In addition, relatively high errors were found in the range of weak wind speeds (<6 m s-1) during the day and strong wind speeds (>10 m s-1) at night. Atmospheric water vapor contributed to high SST differences in very low ranges of <30 mm and in very high ranges of >60 mm. These errors are consistent with those observed in previous studies, in which GMI data were less accurate at low SST and were estimated to be due to differences in land and ocean radiation, wind-induced changes in sea surface roughness, and absorption of water vapor into the microwave atmosphere. These results suggest that the characteristics of the GMI SST differences should be clarified for more extensive use of microwave satellite SST calculations in the seas around the Korean Peninsula, including a part of the Northwest Pacific.

Science and Technology ODA Promotion of Korea through ICT of Global Problem Solving Centers -Suggestion on the mid- and short-term projects promotion of science and technology ODA roadmap- (글로벌문제해결거점 ICT화를 통한 한국형 과학기술 ODA 추진 -과학기술 ODA 중·단기 과제 추진에 대한 제언-)

  • Jung, Woo-Kyun;Shin, Kwanwoo;Jeong, Seongpil;Park, Hunkyun;Park, Eun Sun;Ahn, Sung-Hoon
    • Journal of Appropriate Technology
    • /
    • v.7 no.2
    • /
    • pp.162-171
    • /
    • 2021
  • The Korean government proposed the K-SDGs in 2019 to promote the UN SDGs, but the role and tasks of science and technology, an important means of implementing the SDGs, have not been materialized. Accordingly, the role of science and technology ODA for the SDGs was established through the Ministry of Science and ICT's policy research project 'Science and Technology ODA Promotion Roadmap for Spreading the New Southern Policy and Realizing the 2030 SDGs'. In addition, goals, strategies, and core tasks for the next 10 years were derived in 10 fields such as water, climate change, energy, and ICT. In this paper, we analyze 30 key tasks of the ODA promotion roadmap for science and technology for the realization of SDGs, and propose mid- and short-term tasks and implementation plans for effective roadmap promotion. Among the key tasks in each field, four common elements were derived: ICT/smartization, a global problem-solving center, cooperation/communication platform, and business model/startup support platform/living lab that can create and integrate roadmap implementation conditions. In addition, the four mid- and short-term tasks, 1) Establishment of science and technology ODA network, 2) Establishment of living lab business platform linked to start-up support business, 3) Local smartization of recipient countries, and 4) Expand and secure sustainability of global problem-solving centers, were set in relation to the implementation of the detailed roadmap. For the derived mid- and short-term tasks, detailed implementation plans based on the ICTization of global problem-solving centers were presented. The implementation of the mid- and short-term tasks presented in this paper can contribute to the more effective achievement of the science and technology ODA roadmap, and it is expected that Korea's implementation of SDGs will also achieve high performance.

Characteristics of Environmental Factors and Vegetation Community of Zabelia tyaihyonii (Nakai) Hisauti & H.Hara among the Target Plant Species for Conservation in Baekdudaegan (백두대간 중점보전종인 댕강나무의 식생 군집 및 환경인자 특성)

  • Kim, Ji-Dong;Lee, Hye-Jeong;Lee, Dong-Hyuk;Byeon, Jun Gi;Park, Byeong Joo;Heo, Tae-Im
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.2
    • /
    • pp.201-223
    • /
    • 2022
  • Currently, species extinctions are increasing due to climate change and continued anthropogenic impact. We selected 300 species for conservation with emphasis on plants co-occurring in the Baekdudaegan area, which is a large ecological axis of Korea. We aimed to investigate the vegetation community and environmental characteristics of Zabelia tyaihyonii in the limestone habitat among the target plant species in the Baekdudaegan region to derive effective conservation strategies. In Danyang-gun, Yeongwol-gun, and Jecheon-si, we selected 36 investigation sites where Z. tyaihyonii was present. We investigated the vegetation, flora, soil and physical environment. We also found notable plants such as Thalictrum petaloideum, Sillaphyton podagraria, and Neillia uekii at the investigation sites. We classified forest vegetation community types into 4 vegetation units and 7 species group types. With canonical correspondence analysis (CCA) of the vegetation community and habitat factors, we determined the overall explanatory power to be 75.2%, and we classified the environmental characteristics of the habitat of Z. tyaihyonii into a grouping of three. Among these, we detected a relationship between the environmental factors elevation, slope, organic matter, rock ratio, pH, potassium, and sodium. We identified numerous rare and endemic plants, including Thalictrum petaloideum, in the investigation site, and determined that these groups needed to be preserved at the habitat level. In the classification of the vegetation units analyzed based on the emerging plants and the CCA, we reaffirmed the uniqueness and specificity of the vegetation community in the habitat of Z. tyaihyonii. We anticipate that our results will be used as scientific evidence for the empirical conservation of the native habitats of Z. tyaihyonii.

Influences of Major Nutrients in Surface Water, Soil and Growth Responses to Application of Supplemental Activated Biochar Pellet Fertilizers in Rice (Oryza sativa L.) Cultivation (벼 재배 시 활성 바이오차 팰렛 비료 시용에 따른 논 표면수와 토양의 주요 양분 함량 및 벼 생육에 미치는 영향)

  • Lee, SangBeom;Park, DoGyun;Jeong, ChangYoon;Nam, JooHee;Kim, MinJeong;Nam, HongShik;Shim, ChangKi;Hong, SeungGil;Shin, JoungDu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.2
    • /
    • pp.17-28
    • /
    • 2022
  • The application of supplemental activated biochar pellet fertilizers (ABPFs) was evaluated by investigating key factors such as changes of surface paddy water and soil chemical properties and rice growth responses during the growing season. The treatments consisted of control, activated rice hull biochar pellet (ARHBP-40%), and activated palm biochar pellet (APBP-40%) applications. It was shown that the lowest NH4+-N and PO4--P concentrations were observed in surface paddy water to the ARHBP-40%, while the NH4+-N concentration in the control was abruptly decreased until 30 days after transplant in the soil. However, the lowest NH4+-N concentration in the blended biochar application was 9.18 mg L-1 at 1 day of transplant, but its ABPFs application was observed to be less than 1 mg L-1 at 56 days after transplant. The lowest PO4--P concentration in paddy water treated ARHBP-40% ranged from 0.06 mg L-1 to 0.08 mg L-1 until 30 days after transplant among the treatments. For the paddy soil, the NH4+-N concentration in the control was abruptly decreased from 177.7 mg kg-1 to 49.4 mg kg-1, while NO3--N concentration was highest, 13.2 mg kg-1 in 14 days after transplant. The P2O5 concentrations in the soils increased from rice transplants until the harvesting period regardless of the treatments. The highest K2O concentration was 252.8 mg kg-1 in the APBP-40% at 84 days after transplant. For the rice growth responses, plant height in the control was relatively high compared to others, but grain yield was not significantly different between the control and ARHBP-40%. The application of ARHBP-40% can minimize nitrogen and phosphorous application rates into the agro-ecosystem.

Application of Flux Average Discharge Equation to Assess the Submarine Fresh Groundwater Discharge in a Coastal Aquifer (연안 대수층의 해저 담지하수 유출량 산정을 위한 유량 평균 유출량 방정식의 적용)

  • Il Hwan Kim;Min-Gyu Kim;Il-Moon Chung;Gyo-Cheol Jeong;Sunwoo Chang
    • The Journal of Engineering Geology
    • /
    • v.33 no.1
    • /
    • pp.105-119
    • /
    • 2023
  • Water supply is decreasing due to climate change, and coastal and island regions are highly dependent on groundwater, reducing the amount of available water. For sustainable water supply in coastal and island regions, it is necessary to accurately diagnose the current condition and efficiently distribute and manage water. For a precise analysis of the groundwater flow in the coastal island region, submarine fresh groundwater discharge was calculated for the Seongsan basin in the eastern part of Jeju Island. Two methods were used to estimate the thickness of the fresh groundwater. One method employed vertical interpolation of measured electrical conductivity in a multi depth monitoring well; the other used theoretical Ghyben-Herzberg ratio. The value using the Ghyben-Herzberg ratio makes it impossible to accurately estimate the changing salt-saltwater interface, and the value analyzed by electrical conductivity can represent the current state of the freshwater-saltwater interface. Observed parameter was distributed on a virtual grid. The average of submarine fresh groundwater discharge fluxes for the virtual grid was determined as the watershed's representative flux. The submarine fresh groundwater discharge and flux distribution by year were also calculated at the basin scale. The method using electrical conductivity estimated the submarine fresh groundwater discharge from 2018 to 2020 to be 6.27 × 106 m3/year; the method using the Ghyben-Herzberg ratio estimated a discharge of 10.87 × 106 m3/year. The results presented in this study can be used as basis data for policies that determine sustainable water supply by using precise water budget analysis in coastal and island areas.

Morphometric Characterization of Newly Defined Subspecies Apis cerana koreana (Hymenoptera: Apidae) in the Republic of Korea (국내 토종벌(Apis cerana koreana) 아종의 형태적 특성 분석)

  • Olga, Frunze;Jung-Eun, Kim;Dongwon, Kim;Eun-Jin, Kang;Kyungmun, Kim;Bo-Sun, Park;Yong-Soo, Choi
    • Korean journal of applied entomology
    • /
    • v.61 no.3
    • /
    • pp.399-408
    • /
    • 2022
  • There has been much debate on the morphometric divergence between the recently identified Apis cerana koreana and Apis cerana honey bees. The aim of this study was to obtain phenotypic information that can be used to compare A. c. koreana data with other A. cerana subspecies data from open resources and determine breeding results on the basis of morphometric traits. To differentiate A. c. koreana, we investigated 22 classic morphological characteristics; royal jelly secretion; and the weight of workers, queens, and drones of A. c. koreana bred in Korea. To define the selection results, we used the geometric morphometric method. The artificially selected A. c. koreana secreted significantly more royal jelly (1.18 times) than the naturally selected A. c. koreana, which positively influenced the health of the colonies. These honey bees were identified more clearly with the geometric morphometric method than with the classic morphometric method, which is traditionally used to determine the subspecies. Large trends were noted for A. c. koreana on the basis of our results and literature from the 1980s regarding A. cerana sizes in Korea (tarsal index, length of forewing, and cubital index were measured). The cluster analysis revealed the proximity of A. c. koreana, A. cerana in China, and A. c. indica on the basis of eight classic characters, which, perhaps, relay the origin of the honey bees. The results of this study defined the morphometric responses of A. c. koreana honey bees to geographic isolation, climate change, and selection, which are important to identify, protect, and preserve honey bee stock in Korea.

Changes in Distribution of Debris Slopes and Vegetation Characteristics in Mudeungsan National Park (무등산국립공원의 암설사면 분포변화 및 식생 특성)

  • Seok-Gon Park;Dong-Hyo Kim
    • Korean Journal of Environment and Ecology
    • /
    • v.37 no.1
    • /
    • pp.1-12
    • /
    • 2023
  • We analyzed the distribution area of debris slopes in Mudeungsan (Mt. Mudeung) National Park by comparing aerial photos of the past (1966) and the present (2017) and identified the vegetation characteristics that affect the change in the area of the debris slopes by investigating the vegetation status of the debris slopes and the surrounding areas. The area of debris slopes in Mt. Mudeung appears to have been reduced to a quarter of what it used to be. Debris slopes here have decreased at an average rate of 2.3 ha/yr over 51 years by vegetation covers. Notably, most of the small-area debris slopes in the low-inclination slopes disappeared due to active vegetation coverage. However, there are still west-facing, south-west-facing, south-facing, and large-area debris slopes remaining because the sun's radiant heat rapidly raises the surface temperature of rock blocks and dries moisture, making tree growth unfavorable. Because of these locational characteristics, the small-scale vegetation in the middle of Deoksan Stony Slope, which is the broadest area, showed distinct characteristics from the adjacent forest areas. Sunny places and tree species with excellent drying resistance were observed frequently in Deoksan Stony Slope. However, tree species with high hygropreference that grow well in valleys with good soil conditions also prevailed. In some of these places, the soil layer has been well developed due to the accumulation of fine materials and organic matter between the crevices of the rock blocks, which is likely to have provided favorable conditions for such tree species to settle and grow. At the top of Mt. Mudeung, on the other hand, the forest covered the debris slopes, where Mongolian oaks (Quercus mongolica) and royal azaleas (Rhododendron schlippenbachii), which typically grow in the highlands, prevailed. This area was considered favorable for the development of vegetation for the highlands because the density of rock blocks was lower than in Deoksan Stony Slope, and the soil was exposed. Moreover, ash trees (Fraxinus rhynchophylla) and Korean maple trees (Acer pseudosieboldianum) that commonly appear in the valley areas were dominant here. It is probably due to the increased moisture content in the soil, which resulted from creating a depressive landform with a concave shape that is easy to collect rainwater as rock blocks in some areas fell and piled up in the lower region. In conclusion, the area, density of the rock blocks, and distribution pattern of rock block slopes would have affected the vegetation development and species composition in the debris slope landform.

An Analysis of the Effect of Reducing Temperature and Fine Dust in the Roadside Tree Planting Scenario (가로수 식재 시나리오에 따른 기온 및 미세먼지 저감 효과 분석)

  • Jeong-Hee EUM;Jin-Kyu MIN;Ju-Hyun PARK;Jeong-Min SON;Hong-Duck SOU;Jeong-Hak OH
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.2
    • /
    • pp.68-81
    • /
    • 2023
  • This study aims to establish a scenario based on the spacing and arrangement of the roadside trees to reduce heat waves and fine dust in cities that occurred during the urbanization process and to quantitatively analyze the degree of reduction. The ENVI-met 5.0.2v model, a micro-climate simulation program, was used to analyze the degree of improvement in the thermal environment and fine dust according to the roadside tree scenario. As a result of temperature analysis according to street tree spacing, the narrower the distance between roadside trees, the lower the temperature during the day as the number of planted trees increased, and a similar pattern was shown regardless of the distance between roadside trees in the morning and evening. In the case of fine dust emitted from the road, the concentration of fine dust increased slightly due to the increase in roadside trees, but the concentration of sidewalks where people walk increased slightly or there was no difference because of blocking fine dust on trees. The temperature according to the arrangement of street trees tended to decrease as the number of planted trees increased as the arrangement increased. However, not only the amount of trees but also the crown projected area was judged to have a significant impact on the temperature reduction because the temperature reduction was greater in the scenario of planting the same amount of trees and widening the interval of arrangement. In terms of the arrangement, the fine dust concentration showed a difference from the results according to the interval, suggesting that the fine dust concentration may change depending on the relationship between the main wind direction and the tree planting direction. By quantitatively analyzing the degree of thermal environment and fine dust improvement caused by roadside trees, this study is expected to promote policies and projects to improve the roadside environment efficiently, such as a basic plan for roadside trees and a project for wind corridor forests.

A Study on Industry-specific Sustainability Strategy: Analyzing ESG Reports and News Articles (산업별 지속가능경영 전략 고찰: ESG 보고서와 뉴스 기사를 중심으로)

  • WonHee Kim;YoungOk Kwon
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.287-316
    • /
    • 2023
  • As global energy crisis and the COVID-19 pandemic have emerged as social issues, there is a growing demand for companies to move away from profit-centric business models and embrace sustainable management that balances environmental, social, and governance (ESG) factors. ESG activities of companies vary across industries, and industry-specific weights are applied in ESG evaluations. Therefore, it is important to develop strategic management approaches that reflect the characteristics of each industry and the importance of each ESG factor. Additionally, with the stance of strengthened focus on ESG disclosures, specific guidelines are needed to identify and report on sustainable management activities of domestic companies. To understand corporate sustainability strategies, analyzing ESG reports and news articles by industry can help identify strategic characteristics in specific industries. However, each company has its own unique strategies and report structures, making it difficult to grasp detailed trends or action items. In our study, we analyzed ESG reports (2019-2021) and news articles (2019-2022) of six companies in the 'Finance,' 'Manufacturing,' and 'IT' sectors to examine the sustainability strategies of leading domestic ESG companies. Text mining techniques such as keyword frequency analysis and topic modeling were applied to identify industry-specific, ESG element-specific management strategies and issues. The analysis revealed that in the 'Finance' sector, customer-centric management strategies and efforts to promote an inclusive culture within and outside the company were prominent. Strategies addressing climate change, such as carbon neutrality and expanding green finance, were also emphasized. In the 'Manufacturing' sector, the focus was on creating sustainable communities through occupational health and safety issues, sustainable supply chain management, low-carbon technology development, and eco-friendly investments to achieve carbon neutrality. In the 'IT' sector, there was a tendency to focus on technological innovation and digital responsibility to enhance social value through technology. Furthermore, the key issues identified in the ESG factors were as follows: under the 'Environmental' element, issues such as greenhouse gas and carbon emission management, industry-specific eco-friendly activities, and green partnerships were identified. Under the 'Social' element, key issues included social contribution activities through stakeholder engagement, supporting the growth and coexistence of members and partner companies, and enhancing customer value through stable service provision. Under the 'Governance' element, key issues were identified as strengthening board independence through the appointment of outside directors, risk management and communication for sustainable growth, and establishing transparent governance structures. The exploration of the relationship between ESG disclosures in reports and ESG issues in news articles revealed that the sustainability strategies disclosed in reports were aligned with the issues related to ESG disclosed in news articles. However, there was a tendency to strengthen ESG activities for prevention and improvement after negative media coverage that could have a negative impact on corporate image. Additionally, environmental issues were mentioned more frequently in news articles compared to ESG reports, with environmental-related keywords being emphasized in the 'Finance' sector in the reports. Thus, ESG reports and news articles shared some similarities in content due to the sharing of information sources. However, the impact of media coverage influenced the emphasis on specific sustainability strategies, and the extent of mentioning environmental issues varied across documents. Based on our study, the following contributions were derived. From a practical perspective, companies need to consider their characteristics and establish sustainability strategies that align with their capabilities and situations. From an academic perspective, unlike previous studies on ESG strategies, we present a subdivided methodology through analysis considering the industry-specific characteristics of companies.