• Title/Summary/Keyword: climate system

Search Result 2,598, Processing Time 0.027 seconds

Impact of Snow Depth Initialization on Seasonal Prediction of Surface Air Temperature over East Asia for Winter Season (겨울철 동아시아 지역 기온의 계절 예측에 눈깊이 초기화가 미치는 영향)

  • Woo, Sung-Ho;Jeong, Jee-Hoon;Kim, Baek-Min;Kim, Seong-Joong
    • Atmosphere
    • /
    • v.22 no.1
    • /
    • pp.117-128
    • /
    • 2012
  • Does snow depth initialization have a quantitative impact on sub-seasonal to seasonal prediction skill? To answer this question, a snow depth initialization technique for seasonal forecast system has been implemented and the impact of the initialization on the seasonal forecast of surface air temperature during the wintertime is examined. Since the snow depth observation can not be directly used in the model simulation due to the large systematic bias and much smaller model variability, an anomaly rescaling method to the snow depth initialization is applied. Snow depth in the model is initialized by adding a rescaled snow depth observation anomaly to the model snow depth climatology. A suite of seasonal forecast is performed for each year in recent 12 years (1999-2010) with and without the snow depth initialization to evaluate the performance of the developed technique. The results show that the seasonal forecast of surface air temperature over East Asian region sensitively depends on the initial snow depth anomaly over the region. However, the sensitivity shows large differences for different timing of the initialization and forecast lead time. Especially, the snow depth anomaly initialized in the late winter (Mar. 1) is the most effective in modulating the surface air temperature anomaly after one month. The real predictability gained by the snow depth initialization is also examined from the comparison with observation. The gain of the real predictability is generally small except for the forecasting experiment in the early winter (Nov. 1), which shows some skillful forecasts. Implications of these results and future directions for further development are discussed.

Design Flood Estimation in the Hwangguji River Watershed under Climate and Land Use Changes Scenario (기후변화 및 토지이용변화 시나리오를 고려한 황구지천 유역의 설계홍수량 평가)

  • Kim, Jihye;Park, Jihoon;Song, Jung-Hun;Jun, Sang Min;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.1
    • /
    • pp.39-51
    • /
    • 2016
  • Extreme floods occur more often recently as the frequency of extreme storm events increase due to the climate change. Because the extreme flood exceeding the design flood can cause large-scale disasters, it is important to predict and prepare for the future extreme flood. Flood flow is affected by two main factors; rainfall and land use. To predict the future extreme flood, both changes in rainfall due to the climate change and land use should be considered. The objective of this study was to simulate the future design flood in the Hwangguji river watershed, South Korea. The climate and land use change scenarios were derived from the representative concentration pathways (RCP) 4.5 and 8.5 scenarios. Conversion of land use and its effects (CLUE) and hydrologic modelling system (HEC-HMS) models were used to simulate the land use change and design flood, respectively. Design floods of 100-year and 200-year for 2040, 2070, and 2100 under the RCP4.5 and 8.5 scenarios were calculated and analyzed. The land use change simulation described that the urban area would increase, while forest would decrease from 2010 to 2100 for both the RCP4.5 and 8.5 scenarios. The overall changes in design floods from 2010 to 2100 were similar to those of probable rainfalls. However, the impact of land use change on design flood was negligible because the increase rate of probable rainfall was much larger than that of curve number (CN) and impervious area.

Characteristics of Visibility Impairment by Semi-Continuous Optical and Chemical Property Monitoring of Aerosols in Seoul (에어로졸의 광학 및 화학 특성 준실시간 모니터링을 통한 서울지역 시정 감쇄 분석)

  • Park, Jong-Sung;Park, Seung-Myung;Song, In-Ho;Shin, Hye-Jung;Hong, You-Deog
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.4
    • /
    • pp.319-329
    • /
    • 2015
  • The characteristics of aerosol light extinction were investigated by comparing measured and calculated extinction coefficient to understand the contribution of air pollutants on visibility impairment for data during 4 months (Jan~ April), 2014. The integrated nephelometer and aethalometer system were installed to measure the scattering and absorption coefficients of aerosol as well as BAM 1020, MARGA, semi-continuous OCEC analyzer, and online-XRF to calculate the extinction coefficient. The IMPROVE_2005 equation was used to determine the contributions of different chemical components on visibility impairment in $PM_{2.5}$ and $PM_{10}$ due to highest correlation with measured data. Sulfate, nitrate, and organic mass by carbon (OMC) of fine aerosol were the major contributors affecting on visibility impairment. Total contributions to light extinction were calculated as $631.0Mm^{-1}$ for the worst-case and $64.4Mm^{-1}$ for the best-case. The concentrations of aerosol component for the worst-case were 38.4 times and 45.5 times larger than those of the best-case for $(NH_4)_2SO_4$ and $NH_4NO_3$, respectively. At lower visibility condition, in which extinction coefficient was higher than $400Mm^{-1}$, extinction coefficient varied according to the relative humidity variation regardless of $PM_{2.5}$.

Long Term Variability of the Sun and Climate Change (태양활동 긴 주기와 기후변화의 연관성 분석)

  • Cho, Il-Hyun;Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.4
    • /
    • pp.395-404
    • /
    • 2008
  • We explore the linkage between the long term variability of the Sun and earth's climate change by analysing periodicities of time series of solar proxies and global temperature anomalies. We apply the power spectral estimation method named as the periodgram to solar proxies and global temperature anomalies. We also decompose global temperature anomalies and reconstructed total solar irradiance into each local variability components by applying the EMD (Empirical Mode Decomposition) and MODWT MRA (Maximal Overlap Discrete Wavelet Multi Resolution Analysis). Powers for solar proxies at low frequencies are lower than those of high frequencies. On the other hand, powers for temperature anomalies show the other way. We fail to decompose components which having lager than 40 year variabilities from EMD, but both residuals are well decomposed respectively. We determine solar induced components from the time series of temperature anomalies and obtain 39% solar contribution on the recent global warming. We discuss the climate system can be approximated with the second order differential equation since the climate sensitivity can only determine the output amplitude of the signal.

Integrated Korean Flora Database: A versatile web-based database for dissecting flora investigations with climate data

  • Yeon, Jihun;Kim, Yongsung;Kim, Hyejeong;Kim, Juhyun;Park, Jongsun
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.32-32
    • /
    • 2018
  • Flora investigations in Korea have been conducted by many researchers for diverse purposes. Accumulated flora investigation data has not been utilized efficiently because there is no accessible database for comparison. To overcome this shortcoming, we constructed web-based database of flora investigation, named as the Integrated Korean Flora Database (IKFD; http://www.floradb.net/intro.php). Until now, 284 flora references (263 papers, 14 reports and books, and 7 unpublished papers written in between 1962 and 2017) were digitalized into the database. From 134,711 records, 4,301 species belonging to 228 families and 1,079 genera were identified via mapping with two major Korean plant species lists. Polygon areas originated from references were used for distribution of plant species, identifying precise distribution area. It will be a better index to show plant ecological characteristics. Collected micro-climate data provided by Korea Meteorology Administration were also integrated in IFKD for understanding correlation between distribution of plants and micro-climate. Cold hardiness zone which has been utilized for classifying climate zones. 12 out of 26 zones identified based on micro-climate data in Korea were mapped with distribution of plants. More than half species were appeared in zone 6a, 6b, 7a, and 7b. Taken together with these results, IKFD will be a fundamental platform for understanding plants in Korea flora investigation as well as a new standard for classifying distribution of plants. Moreover, Biodiversity Observation Database (BODB; http://www.biodiversitydb.info/intro.php) which integrates plant distribution data was also integrated for further studies.

  • PDF

The Analysis of Correlation between BVOCs and Ozone at Taehwa Research Forest

  • Kim, Dan-Bi;Lee, Sang-Deok;Lee, Seung-Ha;Kim, Rhok-Ho;Lee, Yeong-Jae;Chae, Hee-Mun
    • Journal of Forest and Environmental Science
    • /
    • v.34 no.2
    • /
    • pp.153-161
    • /
    • 2018
  • Ozone absorbs ultraviolet light which is harmful to life. However, the recent increase of ambient ozone level due to climate change is becoming the cause of stimulating human eyes, affecting respiratory system, and damaging crops. In this paper, a study was conducted at the Taehwa Research Forest (TRF) of Seoul National University with the purpose of analyzing the characteristics of forest air chemistry based on the measurement of BVOCs emitted from forests and investigating the correlation of BVOCs with ozone generation. The results showed that levels of isoprene and MVK (Methyl Vinyl Keton)+MACR (Methacrolein) were high in summer, but level of monoterpene was high in spring. Ozone level was high from the middle of May to the middle of June, which was before the rainy season. Comparison of the correlation between ozone and isoprene during the measurement period at the TRF showing limited NOx showed that the $R^2$ was correlated with a low value of about 0.4. However, when the isoprene was actively produced from 6:00 AM to 6:00 PM, correlation analysis showed that $R^2$ was about 0.9, while monoterpene started to increase in the afternoon, and decreased level of ozone at night. Correlation analysis showed negative correlation. Forests have two characteristics: not only the formation of ozone but also the decomposition of ozone.

Modeling the Present Probability of Urban Woody Plants in the face of Climate Change (기후변화에 따른 도시 수종의 기후 적합성 평가모델 - 서울시를 대상으로 -)

  • Kim, Yoon-Jung;Lee, Dong-Kun;Park, Chan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.1
    • /
    • pp.159-170
    • /
    • 2013
  • The effect of climate change on urban woody plants remains difficult to predict in urban areas. Depending on its tolerances, a plant species may stay and survive or stay with slowly declining remnant populations under a changing climate. To predict those vulnerabilities on urban woody plants, this study suggests a basic bioclimatic envelop model of heat requirements, cold tolerance, chilling requirements and moisture requirements that are well documented as the 'climatic niche'. Each component of the 'climatic niche' is measured by the warmth index, the absolute minimum temperature, the number of chilling weeks and the water balance. Regarding the utility of the developed model, the selected urban plant's present probabilities are suggested in the future climate of Seoul. Both Korea and Japan's thermal thresholds are considered for a plant's optimal climatic niche. By considering the thermal thresholds of these two regions for the same species, the different responses observed will reflect the plant's 'hardening' process in a rising climate. The model illustrated that the subpolar plants Taxus cuspidata and Ulmus davidiana var. japonica are predicted to have low suitability in Seoul. The temperate plants Zelkova serrata and Pinus densiflora, which have a broad climatic niche, exhibited the highest present probability in the future. The subtropical plants Camellia japonica and Castanopsis cuspidata var. sieboldii may exhibit a modest growth pattern in the late 21C's future climatic period when an appropriate frost management scheme is offered. The model can be used to hypothesize how urban ecosystems could change over time. Moreover, the developed model can be used to establish selection guidelines for urban plants with high levels of climatic adaptability.

Predicting Impacts of Climate Change on Sinjido Marine Food Web (기후변화로 인한 신지도 근해 해양먹이망 변동예측)

  • Kang, Yun-Ho;Ju, Se-Jong;Park, Young-Gyu
    • Ocean and Polar Research
    • /
    • v.34 no.2
    • /
    • pp.239-251
    • /
    • 2012
  • The food web dynamics in a coastal ecosystem of Korea were predicted with Ecosim, a trophic flow model, under various scenarios of primary productivity due to ocean warming and ocean acidification. Changes in primary productivity were obtained from an earth system model 2.1 under A1B scenario of IPCC $CO_2$ emission and replaced for forcing functions on the phytoplankton group during the period between 2020 and 2100. Impacts of ocean acidification on species were represented in the model for gastropoda, bivalvia, echinodermata, crustacean and cephalopoda groups with effect sizes of conservative, medium and large. The model results show that the total biomass of invertebrate and fish groups decreases 5%, 11~28% and 14~27%, respectively, depending on primary productivity, ocean acidification and combined effects. In particular, the blenny group shows zero biomass at 2080. The zooplankton group shows a sudden increase at the same time, and finally reaches twice the baseline at 2100. On the other hand, the ecosystem attributes of the mean trophic level of the ecosystem, Shannon's H and Kempton's Q indexes show a similar reduction pattern to biomass change, indicating that total biomass, biodiversity and evenness shrink dynamically by impacts of climate change. It is expected from the model results that, after obtaining more information on climate change impacts on the species level, this study will be helpful for further investigation of the food web dynamics in the open seas around Korea.

Estimating Korean Pine(Pinus koraiensis) Habitat Distribution Considering Climate Change Uncertainty - Using Species Distribution Models and RCP Scenarios - (불확실성을 고려한 미래 잣나무의 서식 적지 분포 예측 - 종 분포 모형과 RCP시나리오를 중심으로 -)

  • Ahn, Yoonjung;Lee, Dong-Kun;Kim, Ho Gul;Park, Chan;Kim, Jiyeon;Kim, Jae-uk
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.18 no.3
    • /
    • pp.51-64
    • /
    • 2015
  • Climate change will make significant impact on species distribution in forest. Pinus koraiensis which is commonly called as Korean Pine is normally distributed in frigid zones. Climate change which causes severe heat could affect distribution of Korean pine. Therefore, this study predicted the distribution of Korean Pine and the suitable habitat area with consideration on uncertainty by applying climate change scenarios on an ensemble model. First of all, a site index was considered when selecting present and absent points and a stratified method was used to select the points. Secondly, environmental and climate variables were chosen by literature review and then confirmed with experts. Those variables were used as input data of BIOMOD2. Thirdly, the present distribution model was made. The result was validated with ROC. Lastly, RCP scenarios were applied on the models to create the future distribution model. As a results, each individual model shows quite big differences in the results but generally most models and ensemble models estimated that the suitable habitat area would be decreased in midterm future(40s) as well as long term future(90s).

Agricultural biotechnology: Opportunities and challenges associated with climate change (기후변화에 대응한 농업생명공학의 기회와 도전)

  • Chang, An-Cheol;Choi, Ji-Young;Lee, Shin-Woo;Kim, Dong-Hern;Bae, Shin-Chul
    • Journal of Plant Biotechnology
    • /
    • v.38 no.2
    • /
    • pp.117-124
    • /
    • 2011
  • Considering that the world population is expected to total 9 billion by 2050, it will clearly be necessary to sustain and even accelerate the rate of improvement in crop productivity. In the 21st century, we now face another, perhaps more devastating, environmental threat, namely climate change, which could cause irreversible damage to agricultural ecosystem and loss of production potential. Enhancing intrinsic yield, plant abiotic stress tolerance, and pest and pathogen resistance through agricultural biotechnology will be a critical part of feeding, clothing, and providing energy for the human population, and overcoming climate change. Development and commercialization of genetically engineered crops have significantly contributed to increase of crop yield and farmer's income, decrease of environmental impact associated with herbicide and insecticide, and to reduction of greenhouse gas emissions from this cropping area. Advances in plant genomics, proteomics and system biology have offered an unprecedented opportunities to identify genes, pathways and networks that control agricultural important traits. Because such advances will provide further details and complete understanding of interaction of plant systems and environmental variables, biotechnology is likely to be the most prominent part of the next generation of successful agricultural industry. In this article, we review the prospects for modification of agricultural target traits by genetic engineering, including enhancement of photosynthesis, abiotic stress tolerance, and pest and pathogen resistance associated with such opportunities and challenges under climate change.