• Title/Summary/Keyword: climate model

Search Result 2,517, Processing Time 0.025 seconds

Analysis of Impact of Climate Change on River Flows in an Agricultural Watershed Using a Semi-distributed Watershed Model STREAM (준분포형 유역모델 STREAM을 이용한 기후변화가 농업유역의 하천유량에 미치는 영향 분석)

  • Jeong, Euisang;Cho, Hong-Lae
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.2
    • /
    • pp.131-144
    • /
    • 2019
  • Climate Change affects the hydrological cycle in agricultural watersheds through rising air temperature and changing rainfall patterns. Agricultural watersheds in Korea are characterized by extensive paddy fields and intensive water use, a resource that is under stress from the changing climate. This study analyzed the effects of climate change on river flows for Geum Cheon and Eun-San Choen watershed using STREAM, a semi-distributed watershed model. In order to evaluate the performance and improve the reliability of the model, calibration and validation of the model was done for one flow observation point and three reservoir water storage ratio points. Climate change scenarios were based on RCP data provided by the Korea Meteorological Administration (KMA) and bias corrections were done using the Quantile Mapping method to minimize the uncertainties in the results produced by the climate model to the local scale. Because of water mass-balance, evapotranspiration tended to increase steadily with an increase in air temperature, while the increase in RCP 8.5 scenario resulted in higher RCP 4.5 scenario. The increase in evapotranspiration led to a decrease in the river flow, particularly the decrease in the surface runoff. In the paddy agricultural watershed, irrigation water demand is expected to increase despite an increase in rainfall owing to the high evapotranspiration rates occasioned by climate change.

Possible Changes of East Asian Summer Monsoon by Time Slice Experiment (Time Slice 실험으로 모의한 동아시아 여름몬순의 변화)

  • Moon, JaYeon;Kim, Moon-Hyun;Choi, Da-Hee;Boo, Kyung-On;Kwon, Won-Tae
    • Atmosphere
    • /
    • v.18 no.1
    • /
    • pp.55-70
    • /
    • 2008
  • The global time slice approach is a transient experiment using high resolution atmosphere-only model with boundary condition from the low resolution globally coupled ocean-atmosphere model. The present study employs this "time slice concept" using ECHAM4 atmosphere-only model at a horizontal resolution of T106 with the lower boundary forcing obtained from a lower-resolution (T42) greenhouse gas + aerosol forcing experiment performed using the ECHO-G/S (ECHAM4/HOPE-G) coupled model. In order to assess the impact of horizontal resolution on simulated East Asian summer monsoon climate, the differences in climate response between the time slice experiments of the present and that of IPCC SRES AR4 participating 21 models including coarser (T30) coupled model are compared. The higher resolution model from time slice experiment in the present climate show successful performance in simulating the northward migration and the location of the maximum rainfall during the rainy season over East Asia, although its rainfall amount was somewhat weak compared to the observation. Based on the present climate simulation, the possible change of East Asian summer monsoon rainfall in the future climate by the IPCC SRES A1B scenario, tends to be increased especially over the eastern part of Japan during July and September. The increase of the precipitation over this region seems to be related with the weakening of northwestern part of North Pacific High and the formation of anticyclonic flow over the south of Yangtze River in the future climate.

The Evaluation of Sediment Yield of Dam-basin considering Future Climate Change in GIS Environment (미래 기후변화를 고려한 GIS 기반의 댐유역 유사량 평가)

  • Lee, Geun-Sang;Choi, Yun-Woong;Cho, Gi-Sung
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.383-385
    • /
    • 2010
  • This study analyzed the change of flowout and suspend solid in Andong and Imha basin according to the climate change to develop evaluation index about turbid water occurrence possibility and to support the countermeasures for turbid water management using GIS-based Soil and Water Assessment Tools (SWAT). MIROC3.2 hires model values of A1B climate change scenario that were supplied by Intergovernmental Panel on Climate Change (IPCC) were applied to future climage change data. Precipitation and temperature were corrected by applying the output value of 20th Century Climate Coupled Model (20C3M) based on past climate data during 1977 and 2006 and downscaled with Change Factor (CF) method. And future climate change scenarios were classified as three periods (2020s, 2050s, 2080s) and the change of flowout and suspended solid according to the climate change were estimated by coupling modeled value with SWAT model.

  • PDF

Effects of Hydro-Climate Conditions on Calibrating Conceptual Hydrologic Partitioning Model (개념적 수문분할모형의 보정에 미치는 수문기후학적 조건의 영향)

  • Choi, Jeonghyeon;Seo, Jiyu;Won, Jeongeun;Lee, Okjeong;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.6
    • /
    • pp.568-580
    • /
    • 2020
  • Calibrating a conceptual hydrologic model necessitates selection of a calibration period that produces the most reliable prediction. This often must be chosen randomly, however, since there is no objective guidance. Observation plays the most important role in the calibration or uncertainty evaluation of hydrologic models, in which the key factors are the length of the data and the hydro-climate conditions in which they were collected. In this study, we investigated the effect of the calibration period selected on the predictive performance and uncertainty of a model. After classifying the inflows of the Hapcheon Dam from 1991 to 2019 into four hydro-climate conditions (dry, wet, normal, and mixed), a conceptual hydrologic partitioning model was calibrated using data from the same hydro-climate condition. Then, predictive performance and post-parameter statistics were analyzed during the verification period under various hydro-climate conditions. The results of the study were as follows: 1) Hydro-climate conditions during the calibration period have a significant effect on model performance and uncertainty, 2) calibration of a hydrologic model using data in dry hydro-climate conditions is most advantageous in securing model performance for arbitrary hydro-climate conditions, and 3) the dry calibration can lead to more reliable model results.

Estimation of Crop Yield and Evapotranspiration in Paddy Rice with Climate Change Using APEX-Paddy Model (APEX-Paddy 모델을 이용한 기후변화에 따른 논벼 생산량 및 증발산량 변화 예측)

  • Choi, Soon-Kun;Kim, Min-Kyeong;Jeong, Jaehak;Choi, Dongho;Hur, Seung-Oh
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.4
    • /
    • pp.27-42
    • /
    • 2017
  • The global rise in atmospheric $CO_2$ concentration and its associated climate change have significant effects on agricultural productivity and hydrological cycle. For food security and agricultural water resources planning, it is critical to investigate the impact of climate change on changes in agricultural productivity and water consumption. APEX-Paddy model, which is the modified version of APEX (Agricultural Policy/Environmental eXtender) model for paddy ecosystem, was used to evaluate rice productivity and evapotranspiration based on climate change scenario. Two study areas (Gimjae, Icheon) were selected and the input dataset was obtained from the literature. RCP (Representitive Concentration Pathways) based climate change scenarios were provided by KMA (Korean Meteorological Administration). Rice yield data from 1997 to 2015 were used to validate APEX-Paddy model. The effects of climate change were evaluated at a 30-year interval, such as the 1990s (historical, 1976~2005), the 2025s (2011~2040), the 2055s (2041~2070), and the 2085s (2071~2100). Climate change scenarios showed that the overall evapotranspiration in the 2085s reduced from 10.5 % to 16.3 %. The evaporations were reduced from 15.6 % to 21.7 % due to shortend growth period, the transpirations were reduced from 0.0% to 24.2 % due to increased $CO_2$ concentration and shortend growth period. In case of rice yield, in the 2085s were reduced from 6.0% to 25.0 % compared with the ones in the 1990s. The findings of this study would play a significant role as the basics for evaluating the vulnerability of paddy rice productivity and water management plan against climate change.

The KMA Global Seasonal forecasting system (GloSea6) - Part 2: Climatological Mean Bias Characteristics (기상청 기후예측시스템(GloSea6) - Part 2: 기후모의 평균 오차 특성 분석)

  • Hyun, Yu-Kyung;Lee, Johan;Shin, Beomcheol;Choi, Yuna;Kim, Ji-Yeong;Lee, Sang-Min;Ji, Hee-Sook;Boo, Kyung-On;Lim, Somin;Kim, Hyeri;Ryu, Young;Park, Yeon-Hee;Park, Hyeong-Sik;Choo, Sung-Ho;Hyun, Seung-Hwon;Hwang, Seung-On
    • Atmosphere
    • /
    • v.32 no.2
    • /
    • pp.87-101
    • /
    • 2022
  • In this paper, the performance improvement for the new KMA's Climate Prediction System (GloSea6), which has been built and tested in 2021, is presented by assessing the bias distribution of basic variables from 24 years of GloSea6 hindcasts. Along with the upgrade from GloSea5 to GloSea6, the performance of GloSea6 can be regarded as notable in many respects: improvements in (i) negative bias of geopotential height over the tropical and mid-latitude troposphere and over polar stratosphere in boreal summer; (ii) cold bias of tropospheric temperature; (iii) underestimation of mid-latitude jets; (iv) dry bias in the lower troposphere; (v) cold tongue bias in the equatorial SST and the warm bias of Southern Ocean, suggesting the potential of improvements to the major climate variability in GloSea6. The warm surface temperature in the northern hemisphere continent in summer is eliminated by using CDF-matched soil-moisture initials. However, the cold bias in high latitude snow-covered area in winter still needs to be improved in the future. The intensification of the westerly winds of the summer Asian monsoon and the weakening of the northwest Pacific high, which are considered to be major errors in the GloSea system, had not been significantly improved. However, both the use of increased number of ensembles and the initial conditions at the closest initial dates reveals possibility to improve these biases. It is also noted that the effect of ensemble expansion mainly contributes to the improvement of annual variability over high latitudes and polar regions.

Application of SWAT Model for Simulating Runoff and Water Quality Considering Climate Change (기후변화에 따른 미래 유출 및 수질 모의를 위한 SWAT 모형의 적용)

  • Chung, Eun-Sung;Kim, Sang Ug;Kim, Hyeong Bae
    • Journal of Industrial Technology
    • /
    • v.36
    • /
    • pp.9-16
    • /
    • 2016
  • In the face of increasing impact of climate change due to human activities, there has been an urgent need to resolve the problem in water resources planning management and environmental engineering. Therefore SWAT model was used to identify the impacts and change in hydrological cycle and environmental aspect. The most important step for the development of SWAT model is calibration procedure. Therefore, SWAT-CUP automatic calibration module was used to find some optimal parameters in SWAT model. After calibration in the cheongmicheon basin, SWAT model is used for the projected precipitation and temperature of RCP 4.5 and 8.5 climate change scenarios in AR5. The quantity and quality using SWAT model from 2014 to 2100 were identified. Finally, this study can provide the reasonable finding on impact by climate change.

  • PDF

A Strategy of Assessing Climate Factors' Influence for Agriculture Output

  • Kuan, Chin-Hung;Leu, Yungho;Lee, Chien-Pang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.5
    • /
    • pp.1414-1430
    • /
    • 2022
  • Due to the Internet of Things popularity, many agricultural data are collected by sensors automatically. The abundance of agricultural data makes precise prediction of rice yield possible. Because the climate factors have an essential effect on the rice yield, we considered the climate factors in the prediction model. Accordingly, this paper proposes a machine learning model for rice yield prediction in Taiwan, including the genetic algorithm and support vector regression model. The dataset of this study includes the meteorological data from the Central Weather Bureau and rice yield of Taiwan from 2003 to 2019. The experimental results show the performance of the proposed model is nearly 30% better than MARS, RF, ANN, and SVR models. The most important climate factors affecting the rice yield are the total sunshine hours, the number of rainfall days, and the temperature.The proposed model also offers three advantages: (a) the proposed model can be used in different geographical regions with high prediction accuracies; (b) the proposed model has a high explanatory ability because it could select the important climate factors which affect rice yield; (c) the proposed model is more suitable for predicting rice yield because it provides higher reliability and stability for predicting. The proposed model can assist the government in making sustainable agricultural policies.

Exploring the Relationship between Social Capital and Team Climate in IT Project Teams (IT 프로젝트 팀에 있어서 내외부 사회적 자본과 조직 분위기에 관한 연구)

  • Lee, Jungwoo;Lee, Hyejung;Lee, Seulki
    • Journal of Information Technology Services
    • /
    • v.16 no.3
    • /
    • pp.67-81
    • /
    • 2017
  • IT project teams are composed of experts from various domains with different backgrounds, such as business and technologies. Thus, enhancing knowledge sharing and increasing team social capital are critical for the success of the project. This study examines the relationship among the team social capital, team climate and team performance. A research model and hypotheses are developed from literature review and empirically validated. The research model consists of team social capital, team climate and team performance. Specifically, team social capital, as antecedents, wasconceptualized asinternal and external differentiated by team boundary, and team climate is conceptualized as innovative climate and supportive climate. Using measures adopted from previous studies, 166 data points were collected to test the research model and related hypotheses. PLS data analysis indicated that internal and external social capitalhave positive effect on innovative climate while internal social capital has a positive effect on supportive team climate. The innovative and supportive climate has significant effect on the team performance. Based on the results, we proposed several team management skills for IT project managers. Theoretical constributions are discussed at the end with limitations and further studies.

Applicability Analysis of Chemical Fate Model Considering Climate Change Impact in Municipal and Industrial Areas in Korea (기후변화를 고려한 화학물질거동모형의 도시·산단지역 적용성 연구)

  • Ryu, Sun-Nyeo;Lee, Woo-Kyun
    • Journal of Climate Change Research
    • /
    • v.6 no.2
    • /
    • pp.121-131
    • /
    • 2015
  • As the temperature has changed by climate change, changes in its own characteristic values of the chemical substance or the movement and distribution of chemicals take place in accordance with the changes of hydrological and meteorological phenomena. Depending on the impact of climate change on the chemical behavior, it is necessary to understand and predict quantitative changes in the dynamics of the environment of pollutants due to climate change in order to predict in advance the occurrence of environmental disasters, and minimize the impact on the life and the environment after the incident. In this study, we have analysed and compared chemical fate models validated by previous studies in terms of model configuration, application size and input/output factors. The potential models applicable to municipal and industrial areas were selected on the basis of characteristic of each model, availability of input parameters and consideration for climate change, identified the problems, and then presented an approach to improve applicability.