• Title/Summary/Keyword: climate model

Search Result 2,534, Processing Time 0.039 seconds

Analysis of future flood inundation change in the Tonle Sap basin under a climate change scenario

  • Lee, Dae Eop;Jung, Sung Ho;Yeon, Min Ho;Lee, Gi Ha
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.3
    • /
    • pp.433-446
    • /
    • 2021
  • In this study, the future flood inundation changes under a climate change were simulated in the Tonle Sap basin in Cambodia, one of the countries with high vulnerability to climate change. For the flood inundation simulation using the rainfall-runoff-inundation (RRI) model, globally available geological data (digital elevation model [DEM]; hydrological data and maps based on Shuttle elevation derivatives [HydroSHED]; land cover: Global land cover facility-moderate resolution imaging spectroradiometer [GLCF-MODIS]), rainfall data (Asian precipitation-highly-resolved observational data integration towards evaluation [APHRODITE]), climate change scenario (HadGEM3-RA), and observational water level (Kratie, Koh Khel, Neak Luong st.) were constructed. The future runoff from the Kratie station, the upper boundary condition of the RRI model, was constructed to be predicted using the long short-term memory (LSTM) model. Based on the results predicted by the LSTM model, a total of 4 cases were selected (representative concentration pathway [RCP] 4.5: 2035, 2075; RCP 8.5: 2051, 2072) with the largest annual average runoff by period and scenario. The results of the analysis of the future flood inundation in the Tonle Sap basin were compared with the results of previous studies. Unlike in the past, when the change in the depth of inundation changed to a range of about 1 to 10 meters during the 1997 - 2005 period, it occurred in a range of about 5 to 9 meters during the future period. The results show that in the future RCP 4.5 and 8.5 scenarios, the variability of discharge is reduced compared to the past and that climate change could change the runoff patterns of the Tonle Sap basin.

Cumulative GHG Reduction Impact Analysis by the Diffusion of Solar Thermal Energy Concerning Technologies for the Residential Sector (주거용 건물부문 태양열 기술 보급에 따른 누적 온실가스 감축 효과 분석)

  • Rhee, Dong-eun;Kim, Seung Jin;Jeon, Eui-Chan
    • Journal of Climate Change Research
    • /
    • v.5 no.3
    • /
    • pp.267-275
    • /
    • 2014
  • A key driver for climate change caused by global average temperature rise is greenhouse gas cumulative emissions that stay for long term in the atmosphere. Although at the moment there is no GHG emission, global warming will continue owing to GHG cumulative emission. In this study, scenarios are developed based on two types of optimistic and conservative diffusion goal. There were a total of 6 alternatives scenarios. The objective of this study are to compare scenarios in terms of GHG cumulative emissions and alternative fuels. An object of analysis is the residential buildings and time frame of scenarios is set up by 2030. And this study uses the LEAP model that is a bottom-up energy model. In conclusion, It is important to set specific diffusion pathway for mitigating climate change virtually.

Analysis of Climate Variability under Various Scenarios for Future Urban Growth in Seoul Metropolitan Area (SMA), Korea (미래 도시성장 시나리오에 따른 수도권 기후변화 예측 변동성 분석)

  • Kim, Hyun-Su;Jeong, Ju-Hee;Kim, Yoo-Keun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.3
    • /
    • pp.261-272
    • /
    • 2012
  • In this study, climate variability was predicted by the Weather Research and Forecasting (WRF) model under two different scenarios (current trends scenario; SC1 and managed scenario; SC2) for future urban growth over the Seoul metropolitan area (SMA). We used the urban growth model, SLEUTH (Slope, Land-use, Excluded, Urban, Transportation, Hill-Shade) to predict the future urban growth in SMA. As a result, the difference of urban ratio between two scenarios was the maximum up to 2.2% during 50 years (2000~2050). Also, the results of SLEUTH like this were adjusted in the Weather Research and Forecasting (WRF) model to analysis the difference of the future climate for the future urbanization effect. By scenarios of urban growth, we knew that the significant differences of surface temperature with a maximum of about 4 K and PBL height with a maximum of about 200 m appeared locally in newly urbanized area. However, wind speeds are not sensitive for the future urban growth in SMA. These results show that we need to consider the future land-use changes or future urban extension in the study for the prediction of future climate changes.

The Impact of Climate Change on the Dynamics of Soil Water and Plant Water Stress (토양수분과 식생 스트레스 동역학에 기후변화가 미치는 영향)

  • Han, Su-Hee;Kim, Sang-Dan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.52-56
    • /
    • 2009
  • In this study a dynamic modeling scheme is presented to derive the probabilistic structure of soil water and plant water stress when subject to stochastic precipitation conditions. The newly developed model has the form of the Fokker-Planck equation, and its applicability as a model for the probabilistic evolution of the soil water and plant water stress is investigated under climate change scenarios. This model is based on the cumulant expansion theory, and has the advantage of providing the probabilistic solution in the form of probability distribution function (PDF), from which one can obtain the ensemble average behavior of the dynamics. The simulation result of soil water confirms that the proposed soil water model can properly reproduce the results obtained from observations, and it also proves that the soil water behaves with consistent cycle based on the precipitation pattern. The plant water stress simulation, also, shows two different PDF patterns according to the precipitation. Moreover, with all the simulation results with climate change scenarios, it can be concluded that the future soil water and plant water stress dynamics will differently behave with different climate change scenarios.

  • PDF

Impact of climate variability and change on crop Productivity (기후변화에 따른 작물 생산성반응과 기술적 대응)

  • Shin Jin Chul;Lee Chung Geun;Yoon Young Hwan;Kang Yang Soon
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2000.11a
    • /
    • pp.12-27
    • /
    • 2000
  • During the recent decades, he problem of climate variability and change has been in the forefront of scientific problems. The objective of this study was to assess the impact of climate variability on crop growth and yield. The growth duration was the main impact of climate variability on crop yield. Phyllochronterval was shortened in the global worming situations. A simple model to describe developmental traits was provided from heading data of directly seeded rice cultivars and temperature data. Daily mean development rate could be explained by the average temperature during the growth stage. Simple regression equation between daily mean development rate(x) and the average temperature(y) during the growth period as y = ax + b. It can be simply modified as x = 1/a $\ast$ (y-b). The parameters of the model could depict the thermo sensitivity of the cultivars. On the base of this model, the three doubled CO2 GCM scenarios were assessed. The average of these would suggest a decline in rice production of about 11% if we maintained the current cultivars. Future cultivar's developmental traits could be suggested by the two model parameters.

  • PDF

Analysis of Regional Climate Model For Climate Change Impacts on Water Resources (기후변화에 따른 수자원 영향 평가를 위한 Regional Climate Model에 의한 강수 자료의 특성 분석)

  • Kwon, Hyun-Ha;Kim, Byung-Sik;Yoon, Seok-Young;Kim, Bo-Kyung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1018-1022
    • /
    • 2008
  • 2007년 Intergovernmental Panel on Climate Change(IPCC) 4차보고서 이후로 지구 온난화에 대한 다양한 부분에 영향 분석 연구가 더욱 활발하게 진행되고 있으며, 그 가운데 수자원 즉 육상의 물 순환은 인간 활동과 생태계 전반에 대한 직접 영향으로 인해 기후변화 정책 수립 시 그 중요성이 더욱 부각되고 있다. 현재까지, 많은 연구에 있어서 Global Circulation Model (GCM)을 직접 축소기법을 이용한 후 이를 수문 모형에 입력하여 수자원 영향 분석을 실시해오고 있다. 국외를 중심으로 기존 GCM보다 해상도가 높은 Regional Climate Model(RCM)을 이용한 분석이 일부 시행되고 있으나, 국내에서는 자료의 가용 여부 및 적용성의 검토가 아직 미비한 실정이다. 이러한 관점에서 본 연구에서는 27km의 해상도를 갖는 기상청 RegCM3 RCM에서 도출된 10일 간격 기후변화 SRES 시나리오 자료에 대한 적합성을 평가하고자 한다. 적합성을 평가 하기위해서 국내 주요지점에 근접한 격자자료를 RCM으로부터 추출하고 이에 대한 수문학적 특성치 분석, 저빈도 분석(low frequency analysis), 극치사상의 분포형태 등을 실측 강수자료와 다양한 형태로 비교 검토하여 RCM 자료의 적합성을 평가하였다.

  • PDF

SENSITIVITY ANALYSIS ABOUT THE METHODS OF UTILIZING THE HIGH RESOLUTION CLIMATE MODEL SIMULATION FOR KOREAN WATER RESOURCES PLANNING (I) : THEORETICAL METHODS AND FORMULATIONS

  • Jeong, Chang-Sam;Lee, Sang-Jin;Ko, Ick-Hwan;Heo, Jun-Haeng;Bae, Deg-Hyo
    • Water Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.63-71
    • /
    • 2005
  • Nowadays Climate disasters are frequently happening due to occasional occurrences of EI Nino and La Nina events and among them, water shortage is one of the serious problems. To cope with this problem, climate model simulations can give very helpful information. To utilize the climate model for enhancing the water resources planning techniques, probabilistic measures of the effectiveness of global climate model (GCM) simulations of an indicator variable for discriminating high versus low regional observations of a target variable are proposed in this study. The objective of this study is to present the various analysis methods to find the suitable application methods of GCM information for Korean water resources planning. The basic formulation uses the significance probability of the Kolmogorov-Smirnov test for detecting differences between two variables. The various methods for adopting correct association, changing the window size, discrimination condition, and the use of temporally down scaled data were proposed to find out the suitable way for Korean water resources planning.

  • PDF

Stochastic Behavior of Plant Water Stress Index and the Impact of Climate Change (식생 물 부족 지수의 추계학적 거동과 기후변화가 그에 미치는 영향)

  • Han, Suhee;Yoo, Gayoung;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.4
    • /
    • pp.507-514
    • /
    • 2009
  • In this study, a dynamic modeling scheme is presented to describe the probabilistic structure of soil water and plant water stress index under stochastic precipitation conditions. The proposed model has the form of the Fokker-Planck equation, and its applicability as a model for the probabilistic evolution of the soil water and plant water stress index is investigated under a climate change scenario. The simulation results of soil water confirm that the proposed soil water model can properly reproduce the observations and show that the soil water behaves with consistent cycle based on the precipitation pattern. The simulation results of plant water stress index show two different PDF patterns according to the precipitation. The simple impact assessment of climate change to soil water and plant water stress is discussed with Korean Meteorological Administration regional climate model.

Modeling the potential climate change-induced impacts on future genus Rhipicephalus (Acari: Ixodidae) tick distribution in semi-arid areas of Raya Azebo district, Northern Ethiopia

  • Hadgu, Meseret;Menghistu, Habtamu Taddele;Girma, Atkilt;Abrha, Haftu;Hagos, Haftom
    • Journal of Ecology and Environment
    • /
    • v.43 no.4
    • /
    • pp.427-437
    • /
    • 2019
  • Background: Climate change is believed to be continuously affecting ticks by influencing their habitat suitability. However, we attempted to model the climate change-induced impacts on future genus Rhipicephalus distribution considering the major environmental factors that would influence the tick. Therefore, 50 tick occuance points were taken to model the potential distribution using maximum entropy (MaxEnt) software and 19 climatic variables, taking into account the ability for future climatic change under representative concentration pathways (RCPs) 4.5 and 8.5, were used. Results: MaxEnt model performance was tested and found with the AUC value of 0.99 which indicates excellent goodness-of-fit and predictive accuracy. Current models predict increased temperatures, both in the mid and end terms together with possible changes of other climatic factors like precipitation which may lead to higher tick-borne disease risks associated with expansion of the range of the targeted tick distribution. Distribution maps were constructed for the current, 2050, and 2070 for the two greenhouse gas scenarios and the most dramatic scenario; RCP 8.5 produced the highest increase probable distribution range. Conclusions: The future potential distribution of the genus Rhipicephalus show potential expansion to the new areas due to the future climatic suitability increase. These results indicate that the genus population of the targeted tick could emerge in areas in which they are currently lacking; increased incidence of tick-borne diseases poses further risk which can affect cattle production and productivity, thereby affecting the livelihood of smallholding farmers. Therefore, it is recommended to implement climate change adaptation practices to minimize the impacts.