• Title/Summary/Keyword: climate information

Search Result 1,743, Processing Time 0.039 seconds

Assessment of causality between climate variables and production for whole crop maize using structural equation modeling

  • Kim, Moonju;Sung, Kyungil
    • Journal of Animal Science and Technology
    • /
    • v.63 no.2
    • /
    • pp.339-353
    • /
    • 2021
  • This study aimed to assess the causality of different climate variables on the production of whole crop maize (Zea mays L.; WCM) in the central inland region of the Korea. Furthermore, the effect of these climate variables was also determined by looking at direct and indirect pathways during the stages before and after silking. The WCM metadata (n = 640) were collected from the Rural Development Administration's reports of new variety adaptability from 1985-2011 (27 years). The climate data was collected based on year and location from the Korean Meteorology Administration's weather information system. Causality, in this study, was defined by various cause-and-effect relationships between climatic factors, such as temperature, rainfall amount, sunshine duration, wind speed and relative humidity in the seeding to silking stage and the silking to harvesting stage. All climate variables except wind speed were different before and after the silking stage, which indicates the silking occurred during the period when the Korean season changed from spring to summer. Therefore, the structure of causality was constructed by taking account of the climate variables that were divided by the silking stage. In particular, the indirect effect of rainfall through the appropriate temperature range was different before and after the silking stage. The damage caused by heat-humidity was having effect before the silking stage while the damage caused by night-heat was not affecting WCM production. There was a large variation in soil surface temperature and rainfall before and after the silking stage. Over 350 mm of rainfall affected dry matter yield (DMY) when soil surface temperatures were less than 22℃ before the silking stage. Over 900 mm of rainfall also affected DMY when soil surface temperatures were over 27℃ after the silking stage. For the longitudinal effects of soil surface temperature and rainfall amount, less than 22℃ soil surface temperature and over 300 mm of rainfall before the silking stage affected yield through over 26℃ soil surface temperature and less than 900 mm rainfall after the silking stage, respectively.

Analysis of Inundation Area in the Agricultural Land under Climate Change through Coupled Modeling for Upstream and Downstream (상·하류 연계 모의를 통한 기후변화에 따른 농경지 침수면적 변화 분석)

  • Park, Seongjae;Kwak, Jihye;Kim, Jihye;Kim, Seokhyeon;Lee, Hyunji;Kim, Sinae;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.1
    • /
    • pp.49-66
    • /
    • 2024
  • Extreme rainfall will become intense due to climate change, increasing inundation risk to agricultural land. Hydrological and hydraulic simulations for the entire watershed were conducted to analyze the impact of climate change. Rainfall data was collected based on past weather observation and SSP (Shared Socio-economic Pathway)5-8.5 climate change scenarios. Simulation for flood volume, reservoir operation, river level, and inundation of agricultural land was conducted through K-HAS (KRC Hydraulics & Hydrology Analysis System) and HEC-RAS (Hydrologic Engineering Center - River Analysis System). Various scenarios were selected, encompassing different periods of rainfall data, including the observed period (1973-2022), near-term future (2021-2050), mid-term future (2051-2080), and long-term future (2081-2100), in addition to probabilistic precipitation events with return periods of 20 years and 100 years. The inundation area of the Aho-Buin district was visualized through GIS (Geographic Information System) based on the results of the flooding analysis. The probabilistic precipitation of climate change scenarios was calculated higher than that of past observations, which affected the increase in reservoir inflow, river level, inundation time, and inundation area. The inundation area and inundation time were higher in the 100-year frequency. Inundation risk was high in the order of long-term future, near-term future, mid-term future, and observed period. It was also shown that the Aho and Buin districts were vulnerable to inundation. These results are expected to be used as fundamental data for assessing the risk of flooding for agricultural land and downstream watersheds under climate change, guiding drainage improvement projects, and making flood risk maps.

A Research on the Development Initiative for Public Practices of Local Governmentsin Korea - Focused on the Local Adaptation Planning in Ecosystem Sector - (지자체 기후변화 적응실무 발전방향 연구 - 생태계 분야 기후변화 적응 시행계획 수립 및 이행을 중심으로 -)

  • Yeo, Inae;Hong, Seungbum
    • Journal of Environmental Impact Assessment
    • /
    • v.29 no.2
    • /
    • pp.79-92
    • /
    • 2020
  • This study aimed at analyzing the current status and further needs of ecological information which is provided with the civil servants in the process of climate change adaptation planning in ecosystem sector and at providing suggestions for future development of ecological knowledge on climate change. Therefore, we conducted a questionary survey titled as "the knowledge-base and information needs for climate change adaptation in ecosystem sector" with the civil servants who are engaged with adaptation practices in the ecology related divisions in 17 regional local governments (RLG) and the affiliated basic local governments (BLG) in Korea. As a result, the characteristics of ecological information which is applied in public practices was analyzed and strategies for improved utilization was suggested. 75% of the respondents (RLG 85% and BLG 72%) were aware of the relativeness between the existence and utilization of ecological information and the execution of climate adaptation practices in ecosystem sector. They were agreed with the necessity of ecological information not only in adaptation practices but also overall affairs in the ecological related division in the local government (RLG 82% and BLG 72%). The current situation of utilizing ecological information which is produced from central orlocal government to civil affairs were only represented as 64 persons (28%) in RLG and 42 persons (18%) in BLG. One of the major obstacles that the respondents confront with when applying ecological information to public practices was deficit of prior knowledge on the ecological information itself, such as awareness of the characteristics of ecological information and the link with public affairs for adaptation plans. Therefore, delivering current knowledge and ecological information on climate change by educational and promotional method is an urgent priority to the civil servant. The future needs on ecological information for local government servants were deduced as basic information on local ecosystem and applied knowledge on local development to meet the biodiversity conservation and ecosystem services at the same time. The respondents expected not only the specific guidelines for using ecological information to apply on the adaptation plans in the relevant divisions of the local governments but also the institution where the usage activation of ecological information would be operated and managed to enhance the information utilizing structure in the local government. In the nation-wide, the capacity of local governments should be enhanced with adaptation knowledge and the application of appropriate information to the public practices by central government's aiding with the better quality of information, its public promotion, and the applicability to civil affairs.

Comparison of Land Surface Temperature Algorithm Using Landsat-8 Data for South Korea

  • Choi, Sungwon;Lee, Kyeong-Sang;Seo, Minji;Seong, Noh-Hun;Jin, Donghyun;Jung, Daeseong;Sim, Suyoung;Jung, Im Gook;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.1
    • /
    • pp.153-160
    • /
    • 2021
  • Land Surface Temperature (LST) is the radiological surface temperature which observed by satellite. It is very important factor to estimate condition of the Earth such as Global warming and Heat island. For these reasons, many countries operate their own satellite to observe the Earth condition. South Korea has many landcovers such as forest, crop land, urban. Therefore, if we want to retrieve accurate LST, we would use high-resolution satellite data. In this study, we made LSTs with 4 LST retrieval algorithms which are used widely with Landsat-8 data which has 30 m spatial resolution. We retrieved LST using equations of Price, Becker et al. Prata, Coll et al. and they showed very similar spatial distribution. We validated 4 LSTs with Moderate resolution Imaging Spectroradiometer (MODIS) LST data to find the most suitable algorithm. As a result, every LST shows 2.160 ~ 3.387 K of RMSE. And LST by Prata algorithm show the lowest RMSE than others. With this validation result, we choose LST by Prata algorithm as the most suitable LST to South Korea.

One-month lead dam inflow forecast using climate indices based on tele-connection (원격상관 기후지수를 활용한 1개월 선행 댐유입량 예측)

  • Cho, Jaepil;Jung, Il Won;Kim, Chul Gyium;Kim, Tae Guk
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.5
    • /
    • pp.361-372
    • /
    • 2016
  • Reliable long-term dam inflow prediction is necessary for efficient multi-purpose dam operation in changing climate. Since 2000s the teleconnection between global climate indices (e.g., ENSO) and local hydroclimate regimes have been widely recognized throughout the world. To date many hydrologists focus on predicting future hydrologic conditions using lag teleconnection between streamflow and climate indices. This study investigated the utility of teleconneciton for predicting dam inflow with 1-month lead time at Andong dam basin. To this end 40 global climate indices from NOAA were employed to identify potential predictors of dam inflow, areal averaged precipitation, temperature of Andong dam basin. This study compared three different approaches; 1) dam inflow prediction using SWAT model based on teleconneciton-based precipitation and temperature forecast (SWAT-Forecasted), 2) dam inflow prediction using teleconneciton between dam inflow and climate indices (CIR-Forecasted), and 3) dam inflow prediction based on the rank of current observation in the historical dam inflow (Rank-Observed). Our results demonstrated that CIR-Forecasted showed better predictability than the other approaches, except in December. This is because uncertainties attributed to temporal downscaling from monthly to daily for precipitation and temperature forecasts and hydrologic modeling using SWAT can be ignored from dam inflow forecast through CIR-Forecasted approach. This study indicates that 1-month lead dam inflow forecast based on teleconneciton could provide useful information on Andong dam operation.

Studies on Changes and Future Projections of Subtropical Climate Zones and Extreme Temperature Events over South Korea Using High Resolution Climate Change Scenario Based on PRIDE Model (남한 상세 기후변화 시나리오를 이용한 아열대 기후대 및 극한기온사상의 변화에 대한 연구)

  • Park, Chang Yong;Choi, Young Eun;Kwon, Young A;Kwon, Jae Il;Lee, Han Su
    • Journal of the Korean association of regional geographers
    • /
    • v.19 no.4
    • /
    • pp.600-614
    • /
    • 2013
  • This study aims to examine spatially-detailed changes and projection of subtropical climate zones based on the modified K$\ddot{o}$ppen-Trewartha's climate classification and extreme temperature indices using $1km{\times}1km$ high resolution RCP 4.5 and RCP 8.5 climate change scenarios based on PRIDE model over the Republic of Korea. Subtropical climate zones currently located along the southern coastal region. Future subtropical climate zones would be pushed northwards expanding to the western and the eastern coastal regions as well as some metropolitan areas. For both scenarios, the frequency of cold-related extreme temperatures projects to be reduced while the frequency of hot-related ones projects to be increased. Especially, hot days with $33^{\circ}C$ or higher temperature projects to occur more than 30 days over the most of regions except for some mountain areas with high altitudes during the period of 2070~2100. This study might provide essential information to make climate change adaptation processes be enhanced.

  • PDF

The effect of Service climate on Customer emotion and Customer satisfaction (기업의 서비스 풍토가 고객감정과 고객만족도에 미치는 영향)

  • Kang, Kun-Myong;Hong, Jung-Wan
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.9
    • /
    • pp.65-74
    • /
    • 2021
  • In this study, we further study the customer's positive emotion about the impact of different inherent service climate on the emotions and satisfaction of the customers who receive the service. Through this, the purpose was to present the direction of creating a service climate. As a research method, structural equation statistical analysis, such as measurement model analysis and structural model analysis, was performed using SmartPLS (v.3.2) for data collected in surveys. Looking at the research results, first, a company's service climate has a positive (+) impact on positive customer emotions: pleasure, pleasure, and happiness. This can be interpreted as an indication that creating a business climate for service is an important factor that elicits positive emotions from customers. Second, a company's service climate and positive customer emotion also have a positive impact on customer satisfaction. Finally, when a company's service climate affects customer satisfaction, happiness has the greatest mediating effect among several parameters. This demonstrated empirically that satisfying the happy feelings of customers is the most important of the company's service climate. Since this study is aimed at a small number of restaurant companies, there is a limit to generalizing the findings and applying them to all restaurant companies. Nevertheless, it is meaningful to study the emotions of positive customers when the service climate affects customer satisfaction, and we hope that the company's analysis of service climate will continue to improve customer satisfaction through various emotional analysis as well as positive factors.

Surface Micro-Climate Analysis Based on Urban Morphological Characteristics: Temperature Deviation Estimation and Evaluation (도시의 지표형태학적 특성에 기반한 지면미기후 분석: 기온추정 및 평가)

  • Yi, Chaeyeon;An, Seung Man;Kim, KyuRang;Kwon, Hyuk-gi;Min, Jae-Sik
    • Atmosphere
    • /
    • v.26 no.3
    • /
    • pp.445-459
    • /
    • 2016
  • Air temperature deviation (ATD) is one of major indicators to represent spatial distribution of urban heat island (UHI), which is induced from the urbanization. The purpose of this study is to evaluate the accuracy of air temperature deviation about Climate Analysis Seoul (CAS) workbench, which had developed by National Institute Meteorological Science and TU Berlin. Comparison and correlation analysis for CAS ATD including meso-scale air temperature deviation, local-scale air temperature deviation, total air temperature deviation, surface heat flux deviation, cold air production deviation among meso-scale numerical modelling variable in 'Seoul Region', micro-scale numerical modelling in 'Detail Region', and CAS workbench variable using observation data in ground stations. Comparison between night time OBS ATD and CAS ATD show that have most close values. Most of observations ($dT_{max}$ and $dT_{min}$) have highly positive ($dT_{SHP}$, $dT_{CA}$, MD, TD, $f_{BS}$, $f_{US}$, $f_{WS}$, $h_B$) and negative ($f_{VS}$, $f_{TV}$, $h_V$, Z) correlations. However, CAS workbench needs further improvement of both observational framework and analytical framework to resolve the problems; (1) night time OBS ATD of has closer values in compare with at high rise mountain area and (2) correlations are very dependable to meteorological scale.

A Study on the Estimation of GHG Emissions using a Real World Vehicle Driving Information (실차 운행정보를 이용한 온실가스 배출량 산정에 관한 연구)

  • Park, Geon Jin;Kim, Pil Su;Choi, Sang Jin;Han, Yong Hee;Lee, Heon Ju;Lee, Gap Sang;Jang, Young Kee
    • Journal of Climate Change Research
    • /
    • v.6 no.2
    • /
    • pp.143-158
    • /
    • 2015
  • This study developed the emission intensity estimation method of GHGs by considering the characteristics of the models and time series. The telematics device was installed on the vehicle (OBD-II) to collect information on the operation conditions from each sample vehicle of public authorities. As a result of comparing the mileage distance and fuel consumption, the matching degree is analyzed very high, showed a ${\pm}1{\sim}4%$ error for each vehicle. By comparing driving record diary of vehicles managed by public authorities, this study presents the method that can be used to verify driving information in order to derive the GHGs emission intensity.