• Title/Summary/Keyword: climate extremes

Search Result 64, Processing Time 0.026 seconds

Agroclimatic Maps Augmented by a GIS Technology (디지털 농업기후도 해설)

  • Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.1
    • /
    • pp.63-73
    • /
    • 2010
  • A comprehensive mapping project for agroclimatic zoning in South Korea will end by April 2010, which has required 4 years, a billion won (ca. 0.9 million US dollars) and 22 experts from 7 institutions to complete it. The map database from this project may be categorized into primary, secondary and analytical products. The primary products are called "high definition" digital climate maps (HD-DCMs) and available through the state of the art techniques in geospatial climatology. For example, daily minimum temperature surfaces were prepared by combining the climatic normals (1971-2000 and 1981-2008) of synoptic observations with the simulated thermodynamic nature of cold air by using the raster GIS and microwave temperature profiling which can quantify effects of cold air drainage on local temperature. The spatial resolution of the gridded climate data is 30m for temperature and solar irradiance, and 270m for precipitation. The secondary products are climatic indices produced by statistical analysis of the primary products and includes extremes, sums, and probabilities of climatic events relevant to farming activities at a given grid cell. The analytical products were prepared by driving agronomic models with the HD-DCMs and dates of full bloom, the risk of freezing damage, and the fruit quality are among the examples. Because the spatial resolution of local climate information for agronomic practices exceeds the current weather service scale, HD-DCMs and the value-added products are expected to supplement the insufficient spatial resolution of official climatology. In this lecture, state of the art techniques embedded in the products, how to combine the techniques with the existing geospatial information, and agroclimatic zoning for major crops and fruits in South Korea will be provided.

Water Quality Analysis of Hongcheon River Basin Under Climate Change (기후변화에 따른 홍천강 유역의 수질 변화 분석)

  • Kim, Duckhwan;Hong, Seung Jin;Kim, Jungwook;Han, Daegun;Hong, Ilpyo;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.17 no.4
    • /
    • pp.348-358
    • /
    • 2015
  • Impacts of climate change are being observed in the globe as well as the Korean peninsula. In the past 100 years, the average temperature of the earth rose about 0.75 degree in celsius, while that of Korean peninsula rose about 1.5 degree in celsius. The fifth Assessment Report of IPCC(Intergovermental Panel on Climate Change) predicts that the water pollution will be aggravated by change of hydrologic extremes such as floods and droughts and increase of water temperature (KMA and MOLIT, 2009). In this study, future runoff was calculated by applying climate change scenario to analyze the future water quality for each targe period (Obs : 2001 ~ 2010, Target I : 2011 ~ 2040, Target II : 2041 ~ 2070, Target III : 2071 ~ 2100) in Hongcheon river basin, Korea. In addition, The future water quality was analyzed by using multiple linear regression analysis and artificial neural networks after flow-duration curve analysis. As the results of future water quality prediction in Hongcheon river basin, we have known that BOD, COD and SS will be increased at the end of 21 century. Therefore, we need consider long-term water and water quality management planning and monitoring for the improvement of water quality in the future. For the prediction of more reliable future water quality, we may need consider various social factors with climate components.

Outlook for a New International Agreement on Climate Change Adaptation: How to Approach (기후변화 적응의 신기후체제 합의: 전망을 위한 접근방법)

  • Lee, Seungjun
    • Journal of Environmental Policy
    • /
    • v.14 no.3
    • /
    • pp.75-94
    • /
    • 2015
  • The purpose of this study is to analyze the major issues discussed among Parties and provide a framework for predicting the agreements on those issues, prior to the final negotiation on a new legally-binding agreement on climate change adaptation in the United Nations Framework Convention on Climate Change (UNFCCC). The analyses of documents, adaptation actions, and work of the Ad Hoc Working Group on the Durban Platform for Enhanced Action (ADP) under the UNFCCC informed that the adaptation issue has primarily been focused on the support of developed country Parties for the adaptation of developing country Parties following the principle of the Convention, Common but Differentiated Responsibilities and Respective Capabilities (CBDR-RC). Three-year work of the ADP acknowledged the major issues on adaptation in the new climate agreement, which would be categorized as long-term and global aspects, commitments/contributions/actions, monitoring and evaluation, institutional arrangements, and loss and damage. A final agreement on each issue could be predicted by setting a zone of possible agreement in-between the two extremes of developing and developed country Parties and considering three major elements affecting the Parties' positions, national priority, adaptation action, and social expectation, which are proposed in this study. The three major elements should be considered in a balanced manner by Parties to draw a durable agreement that will enhance global adaptation actions from a long-term perspective. That is, the agreement needs to reflect adaptation actions occurring outside the Convention as well as social expectations for adaptation. It is expected that the new agreement on climate change adaptation, from a long-term and global perspective, would be an opportunity to reduce vulnerability and build resilience to climate change by incorporating global expectations.

  • PDF

User-specific Agrometeorological Service to Local Farming Community: A Case Study (농가맞춤형 기상서비스 시범사업)

  • Yun, Jin I.;Kim, Soo-Ock;Kim, Jin-Hee;Kim, Dae-Jun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.4
    • /
    • pp.320-331
    • /
    • 2013
  • The National Center for AgroMeteorology (NCAM) has designed a risk management solution for individual farms threatened by the climate change and variability. The new service produces weather risk indices tailored to the crop species and phenology by using site-specific weather forecasts and analysis derived from digital products of the Korea Meteorological Administration (KMA). If the risk is high enough to cause any damage to the crops, agrometeorological warnings or watches are delivered to the growers' cellular phones with relevant countermeasures to help protect their crops against the potential damage. Core techniques such as scaling down of weather data to individual farm level and the crop specific risk assessment for operational service were developed and integrated into a cloud based service system. The system was employed and implemented in a rural catchment of 50 $km^2$ with diverse agricultural activities and 230 volunteer farmers are participating in this project to get the user-specific weather information from and to feed their evaluations back to NCAM. The experience obtained through this project will be useful in planning and developing the nation-wide early warning service in agricultural sector exposed to the climate and weather extremes under climate change and climate variability.

Evaluation of near-realtime weekly root-zone Soil Moisture Index (SMI) for the extreme climate monitoring web-service across East Asia (동아시아 이상기후 감시 서비스를 위한 지면모형 기반 준실시간 토양수분지수평가)

  • Chun, Jong Ahn;Lee, Eunjeong;Kim, Daeha;Kim, Seon Tae;Lee, Woo-Seop
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.6
    • /
    • pp.409-416
    • /
    • 2020
  • An extreme climate monitoring is essential to the reduction of socioeconomic damages from extreme events. The objective of this study was to produce the near-realtime weekly root-zone Soil Moisture Index (SMI) on the basis of soil moisture using the Noah 3.3 Land Surface Model (LSM) for potentially monitoring extreme drought events. The Yangtze basin was selected to evaluate the Noah LSM performance for the East Asia region (15-60°N, 70-150°E) and the evapotranspiration (ET) and sensible heat flux (SH) were compared with ET and SH from FluxNet and with ET from FluxCom, Global Land Evaporation Amsterdam Model (GLEAM), ERA-5, and Generalized Complementary Relationship (GCR). For the ET, the coefficients of determination (R2) were higher than 0.96, while the R2 value for the SH was 0.71 with slightly lower than those. A time series of the weekly root-zone SMI revealed that the regions with Extreme drought had been expanded from the northern part of East China to the entire East China between July to October 2019. The trend analysis of the number of extreme drought events showed that extreme drought events in spring had reduced in South Korea over the past 20 years, while those in fall had a tendency to increase. It is concluded that this study can be useful to reduce the socioeconomic damages resulted from climate extremes by comprehensively characterizing extreme drought events.

Development of Stochastic Downscaling Method for Rainfall Data Using GCM (GCM Ensemble을 활용한 추계학적 강우자료 상세화 기법 개발)

  • Kim, Tae-Jeong;Kwon, Hyun-Han;Lee, Dong-Ryul;Yoon, Sun-Kwon
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.9
    • /
    • pp.825-838
    • /
    • 2014
  • The stationary Markov chain model has been widely used as a daily rainfall simulation model. A main assumption of the stationary Markov model is that statistical characteristics do not change over time and do not have any trends. In other words, the stationary Markov chain model for daily rainfall simulation essentially can not incorporate any changes in mean or variance into the model. Here we develop a Non-stationary hidden Markov chain model (NHMM) based stochastic downscaling scheme for simulating the daily rainfall sequences, using general circulation models (GCMs) as inputs. It has been acknowledged that GCMs perform well with respect to annual and seasonal variation at large spatial scale and they stand as one of the primary sources for obtaining forecasts. The proposed model is applied to daily rainfall series at three stations in Nakdong watershed. The model showed a better performance in reproducing most of the statistics associated with daily and seasonal rainfall. In particular, the proposed model provided a significant improvement in reproducing the extremes. It was confirmed that the proposed model could be used as a downscaling model for the purpose of generating plausible daily rainfall scenarios if elaborate GCM forecasts can used as a predictor. Also, the proposed NHMM model can be applied to climate change studies if GCM based climate change scenarios are used as inputs.

A Study on the Cooling Center Manual of Facility and Maintenance for Extreme Heat Disaster (폭염재난에 대응하는 Cooling Center 시설 및 운영기준에 관한 연구)

  • Kim, Jin-Wook
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.4
    • /
    • pp.17-22
    • /
    • 2008
  • Including heat wave, Climate change caused 150,000 casualty in 2000 and heat waves are meteorological events that pose a serious threat to human health. A heat wave is defined as "a period of abnormally and uncomfortably hot and usually humid weather". There is a need for the prevention of health effects due to weather and climate extremes. This study intends to propose the necessity of Response System to correspond to extreme heat. And this research focused on Cooling Center manual of facility and maintenance for extreme heat disaster. It would be useful to be planned based on community and to be taken a role as an E.O.C.(Emergency Operating Center). As a conclusion elderly watching system and the requirements regional cooling center facility was proposed.

Near Future Projection of Extreme Temperature over CORDEX-East Asia Phase 2 Region Using the WRF Model Based on RCP Scenarios (RCP 시나리오 기반 WRF를 이용한 CORDEX-동아시아 2단계 지역의 가까운 미래 극한기온 변화 전망)

  • Seo, Ga-Yeong;Choi, Yeon-Woo;Ahn, Joong-Bae
    • Atmosphere
    • /
    • v.29 no.5
    • /
    • pp.585-597
    • /
    • 2019
  • This study evaluates the performance of Weather Research and Forecasting (WRF) model in simulating temperature over the COordinated Regional climate Downscaling EXperiment-East Asia (CORDEX-EA) Phase 2 domain for the reference period (1981~2005), and assesses the changes in temperature and its extremes in the mid-21st century (2026~2050) under global warming based on Representative Concentration Pathway (RCP) scenarios. MPI-ESM-LR forced by two RCP scenarios (RCP2.6 and RCP8.5) is used as initial and lateral boundary conditions. Overall, WRF can capture the observed features of temperature distribution reflecting local topographic characteristic, despite some disagreement between the observed and simulated patterns. Basically, WRF shows a systematic cold bias in daily mean, minimum and maximum temperature over the entire domain. According to the future projections, summer and winter mean temperatures over East Asia will significantly increase in the mid-21st century. The mean temperature rise is expected to be greater in winter than in summer. In accordance with these results, summer (winter) is projected to begin earlier (later) in the future compared to the historical period. Furthermore, a rise in extreme temperatures shows a tendency to be greater in the future. The averages of daily minimum and maximum temperatures above 90 percentiles are likely to be intensified in the high-latitude, while hot days and hot nights tend to be more frequent in the low-latitude in the mid-21st century. Especially, East Asia would be suffered from strong increases in nocturnal temperature under future global warming.

Assessing the capability of HEC-RAS coupled 1D-2D model through comparison with 2-dimensional flood models

  • Dasallas, Lea;An, Hyunuk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.158-158
    • /
    • 2019
  • Recent studies show the possibility of more frequent extreme events as a result of the changing climate. These weather extremes, such as excessive rainfall, result to debris flow, river overflow and urban flooding, which post a substantial threat to the community. Therefore, an effective flood model is a crucial tool in flood disaster mitigation. In recent years, a number of flood models has been established; however, the major challenge in developing effective and accurate inundation models is the inconvenience of running multiple models for separate conditions. Among the solutions in recent researches is the development of the combined 1D-2D flood modeling. The coupled 1D-2D river flood modeling allows channel flows to be represented in 1D and the overbank flow to be modeled over two-dimension. To test the efficiency of this approach, this research aims to assess the capability of HEC-RAS model's implementation of the combined 1D-2D hydraulic simulation of river overflow inundation, and compare with the results of GERIS and FLUMENS 2D flood model. Results show similar output to the flood models that had used different methods. This proves the applicability of the HEC-RAS 1D-2D coupling method as a powerful tool in simulating accurate inundation for flood events.

  • PDF

Korean molluscs as auxiliary hosts for parasites: A study of implications for pathogen transmission in a changing climate (기생충의 보조숙주로서의 한국산 연체동물 감염 실태: 기후변화에서 병원체 전파의 영향에 대한 고찰)

  • Park, Gab-Man
    • The Korean Journal of Malacology
    • /
    • v.28 no.1
    • /
    • pp.13-19
    • /
    • 2012
  • To determine the status of Korean molluscs infection and relation with climate change of Korean peninsula, references were reviewed. Wild animals serve as intermediate, reservoirs and paratenic hosts to zoonotic parasites of human beings. Trematode are common parasites of molluscs and almost all trematodes infect mollusks as the first host in the life cycle, and most have a complex life cycle involving other hosts. The significance of auxiliary hosts to the ecology of the parasite has not been proper discussion. There is increasing concern as to the impact of climate change on the epidermiology of many parasitic diseases. A total of 21 species for snail transmitted parasites from Korean molluscs has been reviewed. Among them, 15 species was aquatic mollusks and 6 species for marine mollusks. Maximum infections belonged to Semisulcospira livertina had 11 kind of parasite pathogenic organisms, including Paragonimus westermani, Metagonimus yokogawai, Centrocestus armatus, Notocotylus magniovatus, Centrocestus formosanus, incerte cercaria, nipponensis cercaria, Yoshidae cercaria, cristata cercaria, innominatum cercaria and Metagonimus sp. And 11 in Parafossarulus manchouricus including Clonorchis sinensis, Asymphylodora japonica, Cyathocotyle orientalis, Exorchis oviformis, Notocotylus attenuatus, Echinochasmus japonicus, Loxogenes liberum, Cercariae of Loxogenes liberum Type I, Cercariae of Loxogenes liberum Type II, Furcocercus cercariae (Family Sanguincolidae) and Cercaria of Mucobucaris, 10 in Semisulcospira sp. including Paragonimus westermani, Metagonimus yokogawai, Centrocestus armatus, Echinochasmus redioduplicatus, Notocotylus magniovatus, Cercaria incerte, Cercaria nipponensis, Cercaria yoshidae, paludinarum cercaria and Metagonimus sp., 7 in Koreanomelania globus including Pseudexorchis major, Cercaria of parapleurolophocercous type, Metagonimus sp. (A & B), Cercaria nipponensis, Cercaria inserta and Cercaria yoshidae. Also, Tapes philippinarum have 3 pathogenic organisms including Cercariae tapidis, Cercariae furcocercus and Parvatrema sp. In particular, under climatic extremes such as floods and drought, aquatic molluscs may play a more prominent role in parasite transmission in the future.