• Title/Summary/Keyword: climate data

Search Result 3,664, Processing Time 0.032 seconds

The Role of Digital Technology in Climate Technology Innovation

  • KARAM JO
    • KDI Journal of Economic Policy
    • /
    • v.45 no.2
    • /
    • pp.21-50
    • /
    • 2023
  • In this paper, I empirically estimate the relationship between digital technology and climate technology using the United States Patent and Trademark Office's patent database. I find that innovation in digital technology increases the number of patents for climate technology by 17.3% on average, with digital data-processing technology and machine-learning-related technologies especially playing a key role in this relationship. Designing and implementing detailed policies that take into account the relationship between the two technologies will help us reduce the time required to achieve carbon neutrality and shift to the digital economy.

The Effects of Team Characteristics on the Innovation Performance in R&D Organizations : The Mediating Effect of Creative Climate (R&D조직의 창의적 팀 특성이 혁신성과에 미치는 영향 : 창의적 풍토의 매개효과)

  • Jang, Eun-Young;Kim, Byung-Keun
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.41 no.4
    • /
    • pp.75-93
    • /
    • 2016
  • This study aims at analyzing the relationship between team characteristic and innovation performance. The mediating effect of creative climate on the team characteristic and innovation performance is also measured. Based upon literature review, individual creative characteristics, team diversity, team cohesion, task characteristics are presented as antecedents of team characteristic. Creative climate affects the creative behavior and innovative performance. Creative climate is measured as the Team Climate Inventory (TCI) proposed by Anderson & West (1998) including goal, participative-autonomy and innovative-support. Data were collected from 186 survey responses (54 Teams) out of total 462 (69 teams) from the R&D department of a major ICT firm in Korea. Empirical results show the diversity, cohesion, job characteristic, individual creative characteristic have a positive effect on the creative climate and innovation performance. The participative-autonomy climate factor appears to mediate the relationship between team characteristic (diversity, cohesion, job and individual characteristics) and innovation performance. However, the mediating effects of goals and innovative-support factors were not significant statistically. It was confirmed that the organization can contribute to improve the team innovation performance by facilitating a autonomy and participative climate as well as fostering the team characteristic.

Analysis of the World Wide Web Contents in Korea for the Climate Change Education (기후 변화 교육을 위한 국내 웹 자료 분석)

  • Choi, Hyeh-Sook;Kim, Yong-Pyo
    • Hwankyungkyoyuk
    • /
    • v.23 no.3
    • /
    • pp.1-16
    • /
    • 2010
  • Global climate change becomes one of the most serious environmental problems over the world. There is growing recognition thai climate change education, especially for children is important. However, there have been few programmes, curricula, teachers' training chances, and teaching-learning materials for climate change education so far. Therefore, we analyse the world wide web(web) contents in Korea which are available for climate change education, providing fundamental data in developing educational contents for climate change, as well as helping users to search appropriate contents for climate change education. Subjects for this study are 10 web sites of public institutions related to climate change in Korea. The web contents are evaluated in terms of diversity, accuracy, authenticity and the ease of use. The key finding in this study is that the majority of the contents are focused on how to respond to the problem, especially mitigation and also we find that most of the web sites provide text-types of lesson plan and video-types. Consequently, it would be necessary to develop various web contents for climate change education in both quality and quantity aspects.

  • PDF

Trends in climate finance and ODA for global water infrastructure (글로벌 물시장에서의 기후 금융과 ODA자금 동향 조사)

  • Kim, Jakyum;Kim, Seunghyun;Sohn, Jinsik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.3
    • /
    • pp.169-182
    • /
    • 2020
  • ODA finance in the water sector has decreased after reaching a peak in 2012 although total ODA commitments have steadily increased according to OECD DAC data. However, climate finance in the water sector has increased so much since 2013 according to 7 MDB Joint report on Climate Finance. Water, especially, in climate change is the main issue for adaptation, and the total finance in the water sector reached 50% of the international public adaptation finance in 2016. However, the procedures for approval and the requirements of the proposals for climate funds are different from those for development finance. Notwithstanding the changes in money flows in the water sector, most korean engineering consulting firms in the water infrastructure area are not ready to win the funds relating to climate change. Therefore, It is important to understand a variety of sources of climate funds, characteristics, funding scale on each purpose and procedures for approval. Korean government needs to provide the firms the opportunities to buildup experiences by getting involved in climate adaptation projects with the financial support for developing PPFs, concept notes, and proposals.

Assessing Future Water Demand for Irrigating Paddy Rice under Shared Socioeconomic Pathways (SSPs) Scenario Using the APEX-Paddy Model (APEX-paddy 모델을 활용한 SSPs 시나리오에 따른 논 필요수량 변동 평가)

  • Choi, Soon-Kun;Cho, Jaepil;Jeong, Jaehak;Kim, Min-Kyeong;Yeob, So-Jin;Jo, Sera;Owusu Danquah, Eric;Bang, Jeong Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.6
    • /
    • pp.1-16
    • /
    • 2021
  • Global warming due to climate change is expected to significantly affect the hydrological cycle of agriculture. Therefore, in order to predict the magnitude of climate impact on agricultural water resources in the future, it is necessary to estimate the water demand for irrigation as the climate change. This study aimed at evaluating the future changes in water demand for irrigation under two Shared Socioeconomic Pathways (SSPs) (SSP2-4.5 and SSP5-8.5) scenarios for paddy rice in Gimje, South Korea. The APEX-Paddy model developed for the simulation of paddy environment was used. The model was calibrated and validated using the H2O flux observation data by the eddy covariance system installed at the field. Sixteen General Circulation Models (GCMs) collected from the Climate Model Intercomparison Project phase 6 (CMIP6) and downscaled using Simple Quantile Mapping (SQM) were used. The future climate data obtained were subjected to APEX-Paddy model simulation to evaluate the future water demand for irrigation at the paddy field. Changes in water demand for irrigation were evaluated for Near-future-NF (2011-2040), Mid-future-MF (2041-2070), and Far-future-FF (2071-2100) by comparing with historical data (1981-2010). The result revealed that, water demand for irrigation would increase by 2.3%, 4.8%, and 7.5% for NF, MF and FF respectively under SSP2-4.5 as compared to the historical demand. Under SSP5-8.5, the water demand for irrigation will worsen by 1.6%, 5.7%, 9.7%, for NF, MF and FF respectively. The increasing water demand for irrigating paddy field into the future is due to increasing evapotranspiration resulting from rising daily mean temperatures and solar radiation under the changing climate.

An experimental performance analysis of a cold region stationary photovoltaic system

  • Choi, Wongyu;Warren, Ryan D.;Pate, Michael B.
    • Advances in Energy Research
    • /
    • v.4 no.1
    • /
    • pp.1-28
    • /
    • 2016
  • A grid-connected photovoltaic (PV) system comprised of multicrystalline silicon (mc-Si) modules was installed in a cold climate region in the U.S. This roof-mounted stationary PV system is a real-world application of PV for building energy generation in International Energy Conservation Code (IECC) Climate Zone 5 (and possibly similar climate zones such as 6, 7 and 8), and it served the purposes of research, demonstration, and education. The importance of this work is highlighted by the fact that there has been less emphasis on solar PV system in this region of the U.S. because of climate and latitude challenges. The system is equipped with an extensive data acquisition system capable of collecting performance and meteorological data while visually displaying real-time and historical data through an interactive online interface. Experimental data was collected and analyzed for the system over a one-year period with the focus of the study being on measurements of power production, energy generation, and efficiency. The annual average daily solar insolation incident upon the array was found to be $4.37kWh/m^2$. During the first year of operation, the PV system provided 5,801 kWh (1,264 kWh/kWp) of usable AC electrical energy, and it was found to operate at an annual average conversion efficiency and PR of 10.6 percent and 0.79, respectively. The annual average DC to AC conversion efficiency of the inverter was found to be 94 percent.

A Study on Statistical Downscaling for Projection of Future Temperature Change simulated by ECHO-G/S over the Korean Peninsula (한반도 미래 기온 변화 예측을 위한 ECHO-G/S 시나리오의 통계적 상세화에 관한 연구)

  • Shin, Jinho;Lee, Hyo-Shin;Kwon, Won-Tae;Kim, Minji
    • Atmosphere
    • /
    • v.19 no.2
    • /
    • pp.107-125
    • /
    • 2009
  • Statistical downscaled surface temperature datasets by employing the cyclostationary empirical orthogonal function (CSEOF) analysis and multiple linear regression method are examined. For evaluating the efficiency of this statistical downscaling method, monthly surface temperature of the ECMWF has been downscaled into monthly temperature having a fine spatial scale of ~20km over the Korean peninsula for the 1973-2000 period. Monthly surface temperature of the ECHOG has also been downscaled into the same spatial scale data for the same period. Comparisons of temperatures between two datasets over the Korean peninsula show that annual mean temperature of the ECMWF is about $2^{\circ}C$ higher than that of the ECHOG. After applying to the statistical downscaling method, the difference of two annual mean temperatures reduces less than $1^{\circ}C$ and their spatial patterns become even close to each other. Future downscaled data shows that annual temperatures in the A1B scenario will increase by $3.5^{\circ}C$ by the late 21st century. The downscaled data are influenced by the ECHOG as well as observation data which includes effects of complicated topography and the heat island.

Development of the Korea Ocean Prediction System

  • Suk, Moon-Sik;Chang, Kyung-Il;Nam, Soo-Yong;Park, Sung-Hyea
    • Ocean and Polar Research
    • /
    • v.23 no.2
    • /
    • pp.181-188
    • /
    • 2001
  • We describe here the Korea ocean prediction system that closely resembles operational numerical weather prediction systems. This prediction system will be served for real-time forecasts. The core of the system is a three-dimensional primitive equation numerical circulation model, based on ${\sigma}$-coordinate. Remotely sensed multi-channel sea surface temperature (MCSST) is imposed at the surface. Residual subsurface temperature is assimilated through the relationship between vertical temperature structure function and residual of sea surface height (RSSH) using an optimal interpolation scheme. A unified grid system, named as [K-E-Y], that covers the entire seas around Korea is used. We present and compare hindcasting results during 1990-1999 from a model forced by MCSST without incorporating RSSH data assimilation and the one with both MCSST and RSSH assimilated. The data assimilation is applied only in the East Sea, hence the comparison focuses principally on the mesoscale features prevalent in the East Sea. It is shown that the model with the data assimilation exhibits considerable skill in simulating both the permanent and transient mesoscale features in the East Sea.

  • PDF

Spatial Changes in Work Capacity for Occupations Vulnerable to Heat Stress: Potential Regional Impacts From Global Climate Change

  • Kim, Donghyun;Lee, Junbeom
    • Safety and Health at Work
    • /
    • v.11 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • Background: As the impact of climate change intensifies, exposure to heat stress will grow, leading to a loss of work capacity for vulnerable occupations and affecting individual labor decisions. This study estimates the future work capacity under the Representative Concentration Pathways 8.5 scenario and discusses its regional impacts on the occupational structure in the Republic of Korea. Methods: The data utilized for this study constitute the local wet bulb globe temperature from the Korea Meteorological Administration and information from the Korean Working Condition Survey from the Occupational Safety and Health Research Institute of Korea. Using these data, we classify the occupations vulnerable to heat stress and estimate future changes in work capacity at the local scale, considering the occupational structure. We then identify the spatial cluster of diminishing work capacity using exploratory spatial data analysis. Results: Our findings indicate that 52 occupations are at risk of heat stress, including machine operators and elementary laborers working in the construction, welding, metal, and mining industries. Moreover, spatial clusters with diminished work capacity appear in southwest Korea. Conclusion: Although previous studies investigated the work capacity associated with heat stress in terms of climatic impact, this study quantifies the local impacts due to the global risk of climate change. The results suggest the need for mainstreaming an adaptation policy related to work capacity in regional development strategies.

Spatial Downscaling of AMSR2 Soil Moisture Content using Soil Texture and Field Measurements

  • Na, Sangil;Lee, Kyoungdo;Baek, Shinchul;Hong, Sukyoung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.6
    • /
    • pp.571-581
    • /
    • 2015
  • Soil moisture content is generally accepted as an important factor to understand the process of crop growth and is the basis of earth system models for analysis and prediction of the crop condition. To continuously monitor soil moisture changes at kilometer scale, it is demanded to create high resolution data from the current, several tens of kilometers. In this paper we described a downscaling method for Advanced Microwave Scanning Radiometer 2 (AMSR2) Soil Moisture Content (SMC) from 10 km to 30 m resolution using a soil texture and field measurements that have a high correlation with the SMC. As a result, the soil moisture variations of both data (before and after downscaling) were identical, and the Root Mean Square Error (RMSE) of SMC exhibited the low values. Also, time series analyses showed that three kinds of SMC data (field measurement, original AMSR2, and downscaled AMSR2) had very similar temporal variations. Our method can be applied to downscaling of other soil variables and can contribute to monitoring small-scale changes of soil moisture by providing high resolution data.