• 제목/요약/키워드: climate data

검색결과 3,664건 처리시간 0.027초

Coffee Production and Coffee Berry Borer (Hypothenemus hampei) Condition in Indonesia Related to Climate Change Effect

  • Tio Paragon Ritonga;Ohseok Kwon
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • 제5권1호
    • /
    • pp.28-36
    • /
    • 2024
  • Effect of climate change on the agricultural sector has been predicted and studied, including its effects on coffee cultivation. Climate change can directly impact coffee production or indirectly influence it through its effects on coffee pests. In Indonesia, coffee is a critical export commodity. Climate change can have a large effect on many farmers if it is not addressed appropriately. This study summarizes several studies and data on how climate change affects coffee production and the coffee berry borer (CBB; Hypothenemus hampei) pest in Indonesia. Adaptation plans that can be employed to mitigate impacts of climate change are also summarized.

표준화 방법에 따른 기후변화 취약성 지수의 민감성 연구 (Study on Sensitivity of different Standardization Methods to Climate Change Vulnerability Index)

  • 남기표;김철희
    • 환경영향평가
    • /
    • 제22권6호
    • /
    • pp.677-693
    • /
    • 2013
  • IPCC showed that calculation of climate vulnerability index requires standardization process of various proxy variables for the estimation of climate exposure, sensitivity, and adaptive capacity. In this study, four different methodologies of standardization methods: Z-score, Rescaling, Ranking, and Distance to the reference country, are employed to evaluate climate vulnerability-VRI (Vulnerability-Resilience Indicator) over Korean peninsula, and the error ranges of VRI, arising from employing the different standardization are estimated. All of proxy variables are provided by CCGIS (Climate Change adaptation toolkit based on GIS) which hosts information on both past and current socio-economic data and climate and environmental IPCC SRES (A2, B1, A1B, A1T, A1FI, and A1 scenarios) climate data for the decades of 2000s, 2020s, 2050s, and 2100s. The results showed that Z-score and Rescaling methods showed statistically undistinguishable results with minor differences of spatial distribution, while Ranking and Distance to the reference country methods showed some possibility to lead the different ranking of VRI among South Korean provinces, depending on the local characteristics and reference province. The resultant VRIs calculated from different standardization methods showed Cronbach's alpha of more than 0.84, indicating that all of different methodologies were overall consistent. Similar horizontal distributions were shown with the same trends: VRI increases as province is close to the coastal region and/or it close toward lower latitude, and decreases as it is close to urbanization area. Other characteristics of the four different standardization are discussed in this study.

기후변화에 따른 송악의 잠재서식지 분포 변화 예측 (Potential Impact of Climate Change on Distribution of Hedera rhombea in the Korean Peninsula)

  • 박선욱;구경아;서창완;공우석
    • 한국기후변화학회지
    • /
    • 제7권3호
    • /
    • pp.325-334
    • /
    • 2016
  • We projected the distribution of Hedera rhombea, an evergreen broad-leaved climbing plant, under current climate conditions and predicted its future distributions under global warming. Inaddition, weexplained model uncertainty by employing 9 single Species Distribution model (SDM)s to model the distribution of Hedera rhombea. 9 single SDMs were constructed with 736 presence/absence data and 3 temperature and 3 precipitation data. Uncertainty of each SDM was assessed with TSS (Ture Skill Statistics) and AUC (the Area under the curve) value of ROC (receiver operating characteristic) analyses. To reduce model uncertainty, we combined 9 single SDMs weighted by TSS and resulted in an ensemble forecast, a TSS weighted ensemble. We predicted future distributions of Hedera rhombea under future climate conditions for the period of 2050 (2040~2060), which were estimated with HadGEM2-AO. RF (Random Forest), GBM (Generalized Boosted Model) and TSS weighted ensemble model showed higher prediction accuracies (AUC > 0.95, TSS > 0.80) than other SDMs. Based on the projections of TSS weighted ensemble, potential habitats under current climate conditions showed a discrepancy with actual habitats, especially in the northern distribution limit. The observed northern boundary of Hedera rhombea is Ulsan in the eastern Korean Peninsula, but the projected limit was eastern coast of Gangwon province. Geomorphological conditions and the dispersal limitations mediated by birds, the lack of bird habitats at eastern coast of Gangwon Province, account for such discrepancy. In general, potential habitats of Hedera rhombea expanded under future climate conditions, but the extent of expansions depend on RCP scenarios. Potential Habitat of Hedera rhombea expanded into Jeolla-inland area under RCP 4.5, and into Chungnam and Wonsan under RCP 8.5. Our results would be fundamental information for understanding the potential effects of climate change on the distribution of Hedera rhombea.

Implementation of Agrometeorological Early Warning System for Weather Risk Management in South Korea

  • Shim, Kyo Moon;Kim, Yong Seok;Jung, Myung-Pyo;Choi, In Tae;Kim, Hojung;Kang, Kee Kyung
    • 한국기후변화학회지
    • /
    • 제8권2호
    • /
    • pp.171-175
    • /
    • 2017
  • The purpose of the farmstead-specific early warning service system for weather risk management is to develop custom-made risk management recommendations for individual farms threatened by climate change and its variability. This system quantifies weather conditions into a "weather risk index" that is customized to crop and its growth stage. When the risk reaches the stage where it can cause any damage to the crops, the system is activated and the corresponding warning messages are delivered to the farmer's mobile phone. The messages are sent with proper recommendations that farmers can utilize to protect their crops against potential damage. Currently, the technology necessary to make the warning system more practical has been developed, including technology for forecasting real-time weather conditions, scaling down of weather data to the individual farm level and risk assessments of specific crops. Furthermore, the scientific know-how has already been integrated into a web-based warning system (http://new.agmet.kr). The system is provided to volunteer farmers with direct, one-on-one weather data and disaster warnings along with relevant recommendations. In 2016, an operational system was established in a rural catchment ($1,500km^2$) in the Seomjin river basin.

토지이용 및 기후 예측자료를 활용한 미래 기저유출 분석 (Analysis of Baseflow using Future Land Use and Climate Change Scenario)

  • 최유진;김종건;이동준;한정호;이관재;박민지;김기성;임경재
    • 한국농공학회논문집
    • /
    • 제61권1호
    • /
    • pp.45-59
    • /
    • 2019
  • Since the baseflow, which constitutes most of the river flow in the dry season, plays an important role in the solution of river runoff and drought, it is important to accurately evaluate the characteristics of the baseflow for river management. In this study, land use change was evaluated through time series data of land use, and then baseflow characteristics were analyzed by considering climate change and land use change using climate change scenarios. The results showed that the contribution of baseflow of scenarios considering both climate change and land use change was lower than that of scenarios considering only climate change for yearly and seasonal analysis. This implies that land use changes as well as climate changes affect base runoff. Thus, if we study the watershed in which the land use is occurring rapidly in the future, it is considered that the study should be carried out considering both land use change and climate change. The results of this study can be used as basic data for studying the baseflow characteristics in the Gapcheon watershed considering various land use changes and climate change in the future.

기후변화 취약성 지수 산출을 위한 한반도 관측 기후 특성 분석 (Analysis of Climate Characteristics Observed over the Korean Peninsula for the Estimation of Climate Change Vulnerability Index)

  • 남기표;강정언;김철희
    • 환경영향평가
    • /
    • 제20권6호
    • /
    • pp.891-905
    • /
    • 2011
  • Climate vulnerability index is usually defined as a function of the climate exposure, sensitivity, and adaptive capacity, which requires adequate selection of proxy variables of each variable. We selected and used 9 proxy variables related to climate exposure in the literature, and diagnosed the adequacy of them for application in Korean peninsula. The selected proxy variables are: four variables from temperature, three from precipitation, one from wind speed, and one from relative humidity. We collected climate data over both previous year (1981~2010) and future climate scenario (A1B scenario of IPCC SERES) for 2020, 2050, and 2100. We introduced the spatial and temporal diagnostic statistical parameters, and evaluated both spatial and time variabilities in the relative scale. Of 9 proxy variables, effective humidity indicated the most sensitive to climate change temporally with the biggest spatial variability, implying a good proxy variable in diagnostics of climate change vulnerability in Korea. The second most sensitive variable is the frequency of strong wind speed with a decreasing trend, suggesting that it should be used carefully or may not be of broad utility as a proxy variable in Korea. The A1B scenario of future climate in 2020, 2050 and 2100 matches well with the extension of linear trend of observed variables during 1981~2010, indicating that, except for strong wind speed, the selected proxy variables can be effectively used in calculating the vulnerability index for both past and future climate over Korea. Other local variabilities for the past and future climate in association with climate exposure variables are also discussed here.

계절내-계절 기후예측의 딥러닝 기반 후보정을 위한 입력자료 전처리 기법 평가 (Investigating Data Preprocessing Algorithms of a Deep Learning Postprocessing Model for the Improvement of Sub-Seasonal to Seasonal Climate Predictions)

  • 정유란;이진영;김미애;손수진
    • 한국농림기상학회지
    • /
    • 제25권2호
    • /
    • pp.80-98
    • /
    • 2023
  • 본 연구에서는 계절내-계절(Subseasonal to seasonal, S2S) 기후예측의 주별 예측 성능을 개선하기 위해서 딥러닝 기반의 후보정(post processing) 기술을 개발하였다. 그 첫 단계로, 일 최고, 최저기온과 일 강수를 목표 변수로, 자료의 특성과 분포에 적합한 자료 변환 및 특성 공학 기법을 규명하고자 하였다. 먼저, 6개 개별 기후모델의 S2S 예측 자료를 딥러닝 모델에 입력하기 위한 훈련자료로 변환하고, 이로부터 다중모델앙상블(Multi-Model Ensemble, MME) 기반 훈련자료를 구축하였다. 참값(label)으로는 ECMWF의 ERA5 재분석 자료를 사용하였다. 자료 변환 알고리즘은 최고 및 최저 차이를 계산하여 입력자료의 범위를 변형시키는 MinMax 및 MaxAbs 변환, 표준편차를 이용하는 Standard 변환 및 분위수를 지정하여 변형하는 Robust와 Quantile 변환으로 구성된 전처리 파이프라인을 구축하였으며, 변환된 훈련자료와 예측 변수와의 상관관계를 계산하여 순위에 따라 훈련자료의 특성을 선택하는 특성 선택 기법을 추가하였다. 본 연구는 U-Net 모델에 TimeDistributed wrapper를 모든 합성곱 층(convolutional layer)에 적용하여 활용하였다. 5개 알고리즘으로부터 변환된 6개 개별 기후모델 및 MME S2S 훈련자료(일 최고 및 최저기온, 강수)에 훈련 모델을 적용한 결과와 훈련 모델을 적용하지 않은 결과를 ERA5와의 공간상관계수(spatial Pattern Correlation Coefficient)를 계산하고 그 개선율인 기술 점수(skill score)를 평가한 결과, 일 강수의 PCC 기술 점수는 Standard 및 Robust 변환으로 처리된 것에서 전체 예측선행(1~4주)에 대해 모두 높았고, 일 최고 및 최저기온에서는 예측 선행시간 3~4주에서만 높게 나타났다. 또한, 일 강수에서 특성 선택에 따른 훈련자료의 차원 감소가 예측 성능 변화에 영향을 미치지 않는 것으로 나타났다. 일 최고 및 최저기온의 경우에는 특성 선택에 의한 훈련자료의 특성 정보 감소가 오히려 예측 성능을 저하시킬 수 있는 것으로 확인되었으며, 원시자료에서 예측성이 높은 1~2주 기온 예측 개선을 위한 적합한 전처리 변환 알고리즘이나 특성 선택을 찾을 수 없었다. 후속 연구에서는 원시 예측 성능이 강수에 비해 높으나 딥러닝 훈련 모델에 의한 후보정 효과가 미미한 예측 선행 1~2주 기온 예측의 저조 원인에 대해 탐색하고, 다양한 딥러닝 훈련 모델로의 적용 및 초매개변수 조정 등 학습 과정의 최적화를 통해 S2S 기후 예측 성능을 개선하고자 한다.

기상 및 기후의 수치예측에 대한 슈퍼컴퓨터의 역할 (Role of Supercomputers in Numerical Prediction of Weather and Climate)

  • 박선기
    • 대기
    • /
    • 제14권4호
    • /
    • pp.19-23
    • /
    • 2004
  • Progresses in numerical prediction of weather and climate have been in parallel with those of computing resources, especially the development of supercomputers. Advanced techniques in numerical modeling, computational schemes, and data assimilation cloud not have been practically achieved without the aid of supercomputers. With such techniques and computing powers, the accuracy of numerical forecasts has been tremendously improved. Supercomputers are also indispensible in constructing and executing the synthetic Earth system models. In this study, a brief overview on numerical weather / climate prediction, Earth system modeling, and the values of supercomputing is provided.