• Title/Summary/Keyword: climate data

Search Result 3,663, Processing Time 0.037 seconds

Analysis for Air Temperature Trend and Elasticity of Air-water Temperature according to Climate Changes in Nakdong River Basin (기후변화에 따른 낙동강 유역의 기온 경향성 및 수온과의 탄성도 분석)

  • Shon, Tae Seok;Lim, Yong Gyun;Baek, Meung Ki;Shin, Hyun Suk
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.5
    • /
    • pp.822-833
    • /
    • 2010
  • Temperature increase due to climate changes causes change of water temperature in rivers which results in change of water quality etc. and the change of river ecosystem has a great impact on human life. Analyzing the impact of current climate changes on air and water temperature is an important thing in adapting to the climate changes. This study examined the effect of climate changes through analyzing air temperature trend for Nakdong river basin and analyzed the elasticity of air-water temperature to understand the effect of climate changes on water temperature. For analysis air temperature trend, collecting air temperature data from the National Weather Service on main points in Nakdong river basin, and resampling them at the units of year, season and month, used as data for air temperature trend analysis. Analyzing for elasticity of air-water temperature, the data were collected by the Water Environment Information system for water temperature, while air temperature data were collected at the National Weather Service point nearest in the water temperature point. And using the results of trend analysis and elasticity analysis, the effect of climate changes on water temperature was examined estimating future water temperature in 20 years and 50 years after. It is judged that analysis on mutual impact between factors such as heat budget, precipitation and evapotranspiration on river water temperature affected by climate changes and river water temperature is necessary.

Application of a Statistical Interpolation Method to Correct Extreme Values in High-Resolution Gridded Climate Variables (고해상도 격자 기후자료 내 이상 기후변수 수정을 위한 통계적 보간법 적용)

  • Jeong, Yeo min;Eum, Hyung-Il
    • Journal of Climate Change Research
    • /
    • v.6 no.4
    • /
    • pp.331-344
    • /
    • 2015
  • A long-term gridded historical data at 3 km spatial resolution has been generated for practical regional applications such as hydrologic modelling. However, overly high or low values have been found at some grid points where complex topography or sparse observational network exist. In this study, the Inverse Distance Weighting (IDW) method was applied to properly smooth the overly predicted values of Improved GIS-based Regression Model (IGISRM), called the IDW-IGISRM grid data, at the same resolution for daily precipitation, maximum temperature and minimum temperature from 2001 to 2010 over South Korea. We tested various effective distances in the IDW method to detect an optimal distance that provides the highest performance. IDW-IGISRM was compared with IGISRM to evaluate the effectiveness of IDW-IGISRM with regard to spatial patterns, and quantitative performance metrics over 243 AWS observational points and four selected stations showing the largest biases. Regarding the spatial pattern, IDW-IGISRM reduced irrational overly predicted values, i. e. producing smoother spatial maps that IGISRM for all variables. In addition, all quantitative performance metrics were improved by IDW-IGISRM; correlation coefficient (CC), Index Of Agreement (IOA) increase up to 11.2% and 2.0%, respectively. Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) were also reduced up to 5.4% and 15.2% respectively. At the selected four stations, this study demonstrated that the improvement was more considerable. These results indicate that IDW-IGISRM can improve the predictive performance of IGISRM, consequently providing more reliable high-resolution gridded data for assessment, adaptation, and vulnerability studies of climate change impacts.

Assessing the Impact of Climate Change on Water Resources: Waimea Plains, New Zealand Case Example

  • Zemansky, Gil;Hong, Yoon-Seeok Timothy;Rose, Jennifer;Song, Sung-Ho;Thomas, Joseph
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.18-18
    • /
    • 2011
  • Climate change is impacting and will increasingly impact both the quantity and quality of the world's water resources in a variety of ways. In some areas warming climate results in increased rainfall, surface runoff, and groundwater recharge while in others there may be declines in all of these. Water quality is described by a number of variables. Some are directly impacted by climate change. Temperature is an obvious example. Notably, increased atmospheric concentrations of $CO_2$ triggering climate change increase the $CO_2$ dissolving into water. This has manifold consequences including decreased pH and increased alkalinity, with resultant increases in dissolved concentrations of the minerals in geologic materials contacted by such water. Climate change is also expected to increase the number and intensity of extreme climate events, with related hydrologic changes. A simple framework has been developed in New Zealand for assessing and predicting climate change impacts on water resources. Assessment is largely based on trend analysis of historic data using the non-parametric Mann-Kendall method. Trend analysis requires long-term, regular monitoring data for both climate and hydrologic variables. Data quality is of primary importance and data gaps must be avoided. Quantitative prediction of climate change impacts on the quantity of water resources can be accomplished by computer modelling. This requires the serial coupling of various models. For example, regional downscaling of results from a world-wide general circulation model (GCM) can be used to forecast temperatures and precipitation for various emissions scenarios in specific catchments. Mechanistic or artificial intelligence modelling can then be used with these inputs to simulate climate change impacts over time, such as changes in streamflow, groundwater-surface water interactions, and changes in groundwater levels. The Waimea Plains catchment in New Zealand was selected for a test application of these assessment and prediction methods. This catchment is predicted to undergo relatively minor impacts due to climate change. All available climate and hydrologic databases were obtained and analyzed. These included climate (temperature, precipitation, solar radiation and sunshine hours, evapotranspiration, humidity, and cloud cover) and hydrologic (streamflow and quality and groundwater levels and quality) records. Results varied but there were indications of atmospheric temperature increasing, rainfall decreasing, streamflow decreasing, and groundwater level decreasing trends. Artificial intelligence modelling was applied to predict water usage, rainfall recharge of groundwater, and upstream flow for two regionally downscaled climate change scenarios (A1B and A2). The AI methods used were multi-layer perceptron (MLP) with extended Kalman filtering (EKF), genetic programming (GP), and a dynamic neuro-fuzzy local modelling system (DNFLMS), respectively. These were then used as inputs to a mechanistic groundwater flow-surface water interaction model (MODFLOW). A DNFLMS was also used to simulate downstream flow and groundwater levels for comparison with MODFLOW outputs. MODFLOW and DNFLMS outputs were consistent. They indicated declines in streamflow on the order of 21 to 23% for MODFLOW and DNFLMS (A1B scenario), respectively, and 27% in both cases for the A2 scenario under severe drought conditions by 2058-2059, with little if any change in groundwater levels.

  • PDF

Assessing the Impact of Long-Term Climate Variability on Solar Power Generation through Climate Data Analysis (기후 자료 분석을 통한 장기 기후변동성이 태양광 발전량에 미치는 영향 연구)

  • Chang Ki Kim;Hyun-Goo Kim;Jin-Young Kim
    • New & Renewable Energy
    • /
    • v.19 no.4
    • /
    • pp.98-107
    • /
    • 2023
  • A study was conducted to analyze data from 1981 to 2020 for understanding the impact of climate on solar energy generation. A significant increase of 104.6 kWhm-2 was observed in the annual cumulative solar radiation over this period. Notably, the distribution of solar radiation shifted, with the solar radiation in Busan rising from the seventh place in 1981 to the second place in 2020 in South Korea. This study also examined the correlation between long-term temperature trends and solar radiation. Areas with the highest solar radiation in 2020, such as Busan, Gwangju, Daegu, and Jinju, exhibited strong positive correlations, suggesting that increased solar radiation contributed to higher temperatures. Conversely, regions like Seosan and Mokpo showed lower temperature increases due to factors such as reduced cloud cover. To evaluate the impact on solar energy production, simulations were conducted using climate data from both years. The results revealed that relying solely on historical data for solar energy predictions could lead to overestimations in some areas, including Seosan or Jinju, and underestimations in others such as Busan. Hence, considering long-term climate variability is vital for accurate solar energy forecasting and ensuring the economic feasibility of solar projects.

Review on Environmental Impact Assessment and Adaptation Strategies for Climate Change (기후변화에 따른 적응대책과 환경영향평가)

  • Choi, Kwang-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.2
    • /
    • pp.249-256
    • /
    • 2011
  • Causing by green house gas emission, global warming is being accelerated significantly. This global warming cause world climate to change quiet different than before and we call this phenomenon is Climate Change. Environmental Impact Assessment being implemented in Korea is to prevent predicted environmental impacts from deteriorating within the domestic information and situation. As the climate change is getting severe, new meteorological records can be occurred which is exceeded existing statistical data. According to KMA(Korea Meteorological Administration) data, maximum value of precipitation and temperature in many regions changed with new data within last decade. And these events accompanied with landslides and flooding, and these also affected on water quality in rivers and lakes. According to impacts by climate change, disasters and accidents from heavy rain are the most apprehensive parts. And water pollution caused by overflowed non-point sources during heavy rain fall, fugitive dust caused by long-term drought, and sea level rise and Tsunami may affect on seaside industrial complex should be worth consideration. In this review, necessity of mutual consideration with influences of climate change was considered adding on existing guideline.

Accuracy Comparison of Air Temperature Estimation using Spatial Interpolation Methods according to Application of Temperature Lapse Rate Effect (기온감률 효과 적용에 따른 공간내삽기법의 기온 추정 정확도 비교)

  • Kim, Yong Seok;Shim, Kyo Moon;Jung, Myung Pyo;Choi, In Tae
    • Journal of Climate Change Research
    • /
    • v.5 no.4
    • /
    • pp.323-329
    • /
    • 2014
  • Since the terrain of Korea is complex, micro- as well as meso-climate variability is extreme by locations in Korea. In particular, air temperature of agricultural fields is influenced by topographic features of the surroundings making accurate interpolation of regional meteorological data from point-measured data. This study was carried out to compare spatial interpolation methods to estimate air temperature in agricultural fields surrounded by rugged terrains in South Korea. Four spatial interpolation methods including Inverse Distance Weighting (IDW), Spline, Ordinary Kriging (with the temperature lapse rate) and Cokriging were tested to estimate monthly air temperature of unobserved stations. Monthly measured data sets (minimum and maximum air temperature) from 588 automatic weather system(AWS) locations in South Korea were used to generate the gridded air temperature surface. As the result, temperature lapse rate improved accuracy of all of interpolation methods, especially, spline showed the lowest RMSE of spatial interpolation methods in both maximum and minimum air temperature estimation.

A Climate Prediction Method Based on EMD and Ensemble Prediction Technique

  • Bi, Shuoben;Bi, Shengjie;Chen, Xuan;Ji, Han;Lu, Ying
    • Asia-Pacific Journal of Atmospheric Sciences
    • /
    • v.54 no.4
    • /
    • pp.611-622
    • /
    • 2018
  • Observed climate data are processed under the assumption that their time series are stationary, as in multi-step temperature and precipitation prediction, which usually leads to low prediction accuracy. If a climate system model is based on a single prediction model, the prediction results contain significant uncertainty. In order to overcome this drawback, this study uses a method that integrates ensemble prediction and a stepwise regression model based on a mean-valued generation function. In addition, it utilizes empirical mode decomposition (EMD), which is a new method of handling time series. First, a non-stationary time series is decomposed into a series of intrinsic mode functions (IMFs), which are stationary and multi-scale. Then, a different prediction model is constructed for each component of the IMF using numerical ensemble prediction combined with stepwise regression analysis. Finally, the results are fit to a linear regression model, and a short-term climate prediction system is established using the Visual Studio development platform. The model is validated using temperature data from February 1957 to 2005 from 88 weather stations in Guangxi, China. The results show that compared to single-model prediction methods, the EMD and ensemble prediction model is more effective for forecasting climate change and abrupt climate shifts when using historical data for multi-step prediction.

Perspective of East Asian Reanalysis Data Production (동아시아 지역재분석자료 생산의 전망)

  • Park, Sang-Jong;Choi, Yong-Sang
    • Atmosphere
    • /
    • v.21 no.2
    • /
    • pp.173-183
    • /
    • 2011
  • Production of reanalysis data is important since it contributes to develop all fields of atmospheric sciences and to profit national economy. The developed countries such as USA, EU, and Japan have manufactured the global reanalysis data since the 1990s, but their data present a lack of detailed regional climates. For those who need to analyze the regional climate in/around Korea, a high-resolution reanalysis data should essentially be made. This study reviewed the existing reanalysis data and the applications, and the available observations for the data production. We also investigated the opinions and needs of the potential data users in Korea. We suggest the specifications of the data to have the domain of 55-5N, 80-150E (which includes Mongolia and most Southeast Asian countries), the spatial resolution of 10-20 km, and the period of most recent 30 years. With the specifications and climate models operated in KMA, this study argues that production of the reanalysis data with functional climate information is feasible in both technical and economic aspects. Finally, for successful data production, the framework of the future reanalysis data project was suggested.

Development and Use of Digital Climate Models in Northern Gyunggi Province - I. Derivation of DCMs from Historical Climate Data and Local Land Surface Features (경기북부지역 정밀 수치기후도 제작 및 활용 - I. 수치기후도 제작)

  • 김성기;박중수;이은섭;장정희;정유란;윤진일
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.6 no.1
    • /
    • pp.49-60
    • /
    • 2004
  • Northern Gyeonggi Province(NGP), consisting of 3 counties, is the northernmost region in South Korea adjacent to the de-militarized zone with North Korea. To supplement insufficient spatial coverage of official climate data and climate atlases based on those data, high-resolution digital climate models(DCM) were prepared to support weather- related activities of residents in NGP Monthly climate data from 51 synoptic stations across both North and South Korea were collected for 1981-2000. A digital elevation model(DEM) for this region with 30m cell spacing was used with the climate data for spatially interpolating daily maximum and minimum temperatures, solar irradiance, and precipitation based on relevant topoclimatological models. For daily minimum temperature, a spatial interpolation scheme accommodating the potential influences of cold air accumulation and the temperature inversion was used. For daily maximum temperature estimation, a spatial interpolation model loaded with the overheating index was used. Daily solar irradiances over sloping surfaces were estimated from nearby synoptic station data weighted by potential relative radiation, which is the hourly sum of relative solar intensity. Precipitation was assumed to increase with the difference between virtual terrain elevation and the DEM multiplied by an observed rate. Validations were carried out by installing an observation network specifically for making comparisons with the spatially estimated temperature pattern. Freezing risk in January was estimated for major fruit tree species based on the DCMs under the recurrence intervals of 10, 30, and 100 years, respectively. Frost risks at bud-burst and blossom of tree flowers were also estimated for the same resolution as the DCMs.

Statistical Characteristics of Local Circulation Winds Observed using Climate Data in the Complex Terrain of Chilgok, Gyeongbuk

  • Ha-Young Kim;Soo-Jin Park;Hae-Dong Kim
    • Journal of Environmental Science International
    • /
    • v.32 no.5
    • /
    • pp.375-384
    • /
    • 2023
  • Climate data were obtained over an eight-year period (July 2013 to June 2021) using an automatic weather observation system (AWS) installed at the foot of Mt. Geumo in Chilgok, Gyeongbuk. Using climate data, the statistical and meteorological characteristics of the local circulation between the Nakdong River and Mt. Geumo were analyzed. This study is based on automatic weather observation system data for Dongyeong, along with comparative climate data from the Korea Meteorological Administration (Chilgok) and the Gumi meteorological observatory. Over the eight- years, mountain and valley winds have occurred 48 times a year on average, with the highest occurring in May and the weakest winds in June and December. When mountain winds occurred, the temperature in the nearby lowland region more strongly decreased than when valley winds blew. However, the potential to use mountain winds to improve urban thermal environments is limited because mountain winds occur infrequently in summer when a drop in nighttime temperature is required.