• Title/Summary/Keyword: climate characteristic

Search Result 259, Processing Time 0.028 seconds

Water Balance Change of Watershed by Climate Change (기후변화에 따른 유역의 물수지 변화)

  • Yang, Hea-Kun
    • Journal of the Korean Geographical Society
    • /
    • v.42 no.3 s.120
    • /
    • pp.405-420
    • /
    • 2007
  • This study is intended to analyze and evaluate the effects of Seomjingang Dam and Soyanggang Dam Catchment on water circulation in order to examine water balance change of watershed by climate change. Obviously, air temperature and precipitation showed a gradually increasing trend for the past 30 years; evapotranspiration vary in areas and increasing annual average air temperature is not always proportional to increasing evapotranspiration. Based on Penman-FAO24, climatic water balance methods and measured values are shown to be significantly related with each other and to be available in Korea. It is certainly recognized that increasing annual rainfall volume leads to increasing annual runoff depth; for fluctuation in annual runoff rates, there are some difference in changes in measured values and calculated values. It is presumably early to determine that climate changes has a significant effect on runoff characteristic at dam catchment. It is widely known that climate changes are expected to cause many difficulties in water resources and disaster management. To take appropriate measures, deeper understanding is necessary for climatological conditions and variability of hydrology and to have more careful prospection and to accumulate highly reliable knowledge would be prerequisites for hydrometric network.

Vulnerability AssessmentunderClimateChange and National Water Management Strategy

  • Koontanakulvong, Sucharit;Suthinon, Pongsak
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.204-204
    • /
    • 2016
  • Thailand had set the National Water Management Strategy which covered main six areas in the next 12 years, i.e., by priority: (1) water for household, (2) water for agricultural and industrial production, (3) water for flood and drought management, (4) water for quality issue, (5) water from forest conservation and soil erosion protection, (6) water resources management. However due to the climate change impact, there is a question for all strategies is whether to complete this mission under future climate change. If the impact affects our target, we have to clarify how to mitigate or to adapt with it. Vulnerability assessment was conducted under the framework of ADB's (with the parameters of exposure, sensitivity and adaptive capacity) and the assessments were classified into groups due to their different characteristic and the framework of the National Water Management Strategy, i.e., water supply (rural and urban), water for development (agriculture and others), water disasters (floods (flash, overflow), drought, water quality). The assessments identified the parameters concerned and weight factors used for each groups via expert group discussions and by using GIS mapping technology, the vulnerability maps were produced. The maps were verified with present water situation data (floods, drought, water quality). From the analysis result of this water resources management strategy, we found that 30% of all projects face the big impacts, 40% with low impact, and 30% for no impact. It is clear that water-related agencies have to carefully take care approximately 70% of future projects to meet water resources management strategy. It is recommended that additional issues should be addressed to mitigate the impact from climate risk on water resource management of the country, i.e., water resources management under new risk based on development scenarios, relationship with area-based problems, priority definition by viewpoints of risk, vulnerability (impact and occurrence probability in past and future), water management system in emergency case and water reserve system, use of information, knowledge and technology in management, network cooperation and exchange of experiences, knowledge, technique for sustainable development with mitigation and adaptation, education and communication systems in risk, new impact, and emergency-reserve system. These issues will be described and discussed.

  • PDF

Fatigue wind load spectrum construction based on integration of turbulent wind model and measured data for long-span metal roof

  • Liman Yang;Cong Ye;Xu Yang;Xueyao Yang;Jian-ge Kou
    • Wind and Structures
    • /
    • v.36 no.2
    • /
    • pp.121-131
    • /
    • 2023
  • Aiming at the problem that fatigue characteristics of metal roof rely on local physical tests and lacks the cyclic load sequence matching with regional climate, this paper proposed a method of constructing the fatigue load spectrum based on integration of wind load model, measured data of long-span metal roof and climate statistical data. According to the turbulence characteristics of wind, the wind load model is established from the aspects of turbulence intensity, power spectral density and wind pressure coefficient. Considering the influence of roof configuration on wind pressure distribution, the parameters are modified through fusing the measured data with least squares method to approximate the actual wind pressure load of the roof system. Furthermore, with regards to the wind climate characteristics of building location, Weibull model is adopted to analyze the regional meteorological data to obtain the probability density distribution of wind velocity used for calculating wind load, so as to establish the cyclic wind load sequence with the attributes of regional climate and building configuration. Finally, taking a workshop's metal roof as an example, the wind load spectrum is constructed according to this method, and the fatigue simulation and residual life prediction are implemented based on the experimental data. The forecasting result is lightly higher than the design standards, consistent with general principles of its conservative safety design scale, which shows that the presented method is validated for the fatigue characteristics study and health assessment of metal roof.

Generation of High Resolution Scenarios for Climate Change Impacts on Water Resources (I): Climate Scenarios on Each Sub-basins (수자원에 대한 기후변화 영향평가를 위한 고해상도 시나리오 생산(I): 유역별 기후시나리오 구축)

  • Bae, Deg-Hyo;Jung, Il-Won;Kwon, Won-Tae
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.3
    • /
    • pp.191-204
    • /
    • 2007
  • To evaluate the climate change impacts on water resources, this study generates and analyzes the climate change scenarios for 139 sub-basins in Korea using high resolution ($27km\;{\times}\; 27km$) SHES A2 scenario and LARS-WG. The $27km\;{\times}\; 27km$ high resolution NCAR/PSU MM5 scenario is downscaled from 350km horizontal resolution ECHO-G data. The A2 scenario relatively well reproduced Korean spatial precipitation characteristics, but it underestimated the precipitation over the Han River and the Gum River basins. The LARS-WG was selected and evaluated to overcome the limitation of climate model and to create a highly reliable climate scenario. The results show that the monthly mean minimum and maximum temperature and monthly mean precipitation are within ${\pm}20%$ from the observed mean, and ${\pm}50%$ from the standard deviation that represents the generated data are highly reliable. Moreover, the comparison results between observed data and generated data from LARS-WG show that the latter can reflect the regional climate characteristic very well that can not be simulated from the former.

Energy Performance Analysis the Common House Pansang Type and Tower (공동주택의 판상형과 타워형 에너지 성능 비교 분석)

  • Yoon, Sung-Meen;Lee, Kyung-Hee;Ahn, Young-Chull
    • Journal of Power System Engineering
    • /
    • v.17 no.3
    • /
    • pp.57-64
    • /
    • 2013
  • This study focus on the analysis of the energy performance in accordance with apartment houses arrangement type by using Ecotect Analysis. Korea, energy-poor country, the rate of dependence on imports amount to 94%, have to reduce energy consumption part of building except in industry and transport which affect the economic. Apartment houses are built in various forms in order to reduce energy, are modelled in each window area ratio, shape, orientation, climate through simulation. Through this study, we can analyze energy performance by form, window area ratio, orientation, climate change and know the optimal elements by the form. In particular, although there have been studied research on the window area ratio and research related to the arrangement form, determined that the information on the regional climate characteristics and the direction of placement is less than existing research. To supplement those problem, adding to seven direction(West, S-60-W, S-30-W, South, S-30-E, S-60-E, East) and climatic element(southern region) is characteristic of this study. The form of apartment houses was modelled for apartment houses built in the 10 years since. And each modeling were analyzed by Ecotect Analysis.

The Tsushima Warm Current from a High Resolution Ocean Prediction Model, HYCOM (고해상도 해양예보모형 HYCOM에 재현된 쓰시마난류)

  • Seo, Seongbong;Park, Young-Gyu;Park, Jae-Hun;Lee, Ho Jin;Hirose, N.
    • Ocean and Polar Research
    • /
    • v.35 no.2
    • /
    • pp.135-146
    • /
    • 2013
  • This study investigates the characteristic of the Tsushima Warm Current from an assimilated high resolution global ocean prediction model, $1/12^{\circ}$ Global HYbrid Coordiate Ocean Model (HYCOM). The model results were verified through a comparison with current measurements obtained by acoustic Doppler current profiler (ADCP) mounted on the passenger ferryboat between Busan, Korea, and Hakata, Japan. The annual mean transport of the Tsushima Warm Current was 2.56 Sverdrup (Sv) (1 Sv = $10^6m^3s^{-1}$), which is similar to those from previous studies (Takikawa et al. 1999; Teague et al. 2002). The volume transport time series of the Tsushima Warm Current from HYCOM correlates to a high degree with that from the ADCP observation (the correlation coefficient between the two is 0.82). The spatiotemporal structures of the currents as well as temperature and salinity from HYCOM are comparable to the observed ones.

Cooling and Heating Load Analysis According to Building Type of Apartment House (공동주택의 주동 유형별 냉난방부하 분석)

  • Yoon, Sung-Meen;Lee, Kyung-Hee;Ahn, Young-Chull;Kim, Yong-Tae
    • Journal of Power System Engineering
    • /
    • v.18 no.1
    • /
    • pp.45-50
    • /
    • 2014
  • This study focuses on the analysis of the cooling and heating load in accordance with apartment houses arrangement type using Ecotect Analysis. Korea have to reduce energy consumption part of building except in industry and transport because the rate of dependence on imports amounts to 94%, Apartment houses built in various forms in order to reduce energy are modelled in each window area ratio, shape, orientation, and climate through simulation. Through this study, we can analyze the cooling and heating load by form, window area ratio, orientation, and climate change and know the optimal elements by the form. In particular, although there have been done research on the window area ratio and the arrangement form, the research of the regional climate characteristics and the direction are hardly carried out. To supplement those problem, adding to seven direction and climatic element of southern region is characteristic(L Type, Y Type, - Type) of this study. The form of apartment houses built 10 years ago is modelled for simulation.

Wind characteristics of a strong typhoon in marine surface boundary layer

  • Song, Lili;Li, Q.S.;Chen, Wenchao;Qin, Peng;Huang, Haohui;He, Y.C.
    • Wind and Structures
    • /
    • v.15 no.1
    • /
    • pp.1-15
    • /
    • 2012
  • High-resolution wind data were acquired from a 100-m high offshore tower during the passage of Typhoon Hagupit in September, 2008. The meteorological tower was equipped with an ultrasonic anemometer and a number of cup anemometers at heights between 10 and 100 m. Wind characteristics of the strong typhoon, such as mean wind speed and wind direction, turbulence intensity, turbulence integral length scale, gust factor and power spectra of wind velocity, vertical profiles of mean wind speed were investigated in detail based on the wind data recorded during the strong typhoon. The measured results revealed that the wind characteristics in different stages during the typhoon varied remarkably. Through comparison with non-typhoon wind measurements, the phenomena of enhanced levels of turbulence intensity, gust factors, turbulence integral length scale and spectral magnitudes in typhoon boundary layer were observed. The monitored data and analysis results are expected to be useful for the wind-resistant design of offshore structures and buildings on seashores in typhoon-prone regions.

Simulation of Dynamic Characteristics of a Trigenerative Climate Control System Based On Peltier Thermoelectric Modules

  • Vasilyev, G.S.;Kuzichkin, O.R.;Surzhik, D.I.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.252-257
    • /
    • 2021
  • The application of the principle of trigeneration allows to simultaneously provide electricity to power electronic devices, as well as heat and cold to create the necessary microclimate of the premises and increase efficiency compared to separate cooling and heating systems. The use of Peltier thermoelectric modules (TEM) as part of trigenerative systems allows for smooth and precise control of the temperature regime, high manufacturability and reliability due to the absence of moving parts, resistance to shock and vibration, and small weight and size parameters of the system. One of the promising areas of improvement of trigenerative systems is their modeling and optimization based on the automatic control theory. A block diagram and functional model of an energy-saving trigenerative climate control system based on Peltier modules are developed, and the transfer functions of an open and closed system are obtained. The simulation of the transient characteristics of the system with varying parameters of the components is performed. The directions for improving the quality of transients in the climate control system are determined, as well as the prospects of the proposed methodology for modeling and analyzing control systems operating in substantially nonlinear modes.

The relationship of mean temperature and 9 collected butterfly species' wingspan as the response of global warming

  • Na, Sumi;Lee, Eunyoung;Kim, Hyunjung;Choi, Seiwoong;Yi, Hoonbok
    • Journal of Ecology and Environment
    • /
    • v.45 no.4
    • /
    • pp.182-189
    • /
    • 2021
  • Background: Organism body size is a basic characteristic in ecology; it is related to temperature according to temperature-size rule. Butterflies are affected in various aspects by climate change because they are sensitive to temperature. Therefore, this study was conducted to understand the effect of an increase in temperature due to global warming on the wing of butterflies. Results: A total of 671 butterflies belonging to 9 species were collected from 1990 to 2016 in Seoul (336 specimens) and Mokpo (335 specimens). Consequently, as the mean temperature increased, the wing length of the species increased. However, there are exceptions that the Parnassius stubbendorfii, Pieridae canidia, and Pieris rapae wing length of Seoul increased, but the butterfly wing length of Mokpo decreased. Conclusions: The positive correlations between the butterfly wing length and mean temperature showed that the change of mean temperature for about 26 years affects the wing length of butterfly species. The exception is deemed to have been influenced by the limited research environment, and further studies are needed. We would expect that it can be provided as basic data for studying effect of climate change.