• 제목/요약/키워드: climate change impacts

검색결과 513건 처리시간 0.033초

Elementary Teachers' Knowledge and Teaching of Climate Change

  • Nam, Youn-Kyeong;Kim, Soon-Shik;Lee, Young-Seob
    • 대한지구과학교육학회지
    • /
    • 제4권3호
    • /
    • pp.199-204
    • /
    • 2011
  • This study examines eighteen elementary teachers knowledge and teaching practrice of climate change using the KQEM survey, modified from the survey developed by Leiserowitz, A., Smith, N. & Marlon, J.R. (2010). The survey includes 11 questions from KQEM survey and 2 open ended questions about teachers' knowledge of climate change and their understandings of important climate change concept for elementary students. All of the participant teachers were purposefully selected for the study and were participated in the study volunteerly. The data for this study were analyzed both quantitatively and qualitatively. The result of this study indicates that the teachers have knowledge of climate change specifically about the topics of causes of climate change and consequences of climate change such as shifting biome and ecological impacts. While most of the teachers described climate change phenomena using scientific knowledge, some of the teachers (N=2) showed misconceptions about climate change phenomena. Most of the teachers thought the causes of climate change and potential solutions to reduce climate change are important concept that elementary students need to understand about climate change. Actually, most of the teachers are currently teaching the causes and consequences of climate change (N=13) potential solutions to global warming (N= 8). This study could inform teacher educators about what elementary teachers understand about climate change and what elementary teachers are currently teaching about climate change.

기후변화로 인한 신지도 근해 해양먹이망 변동예측 (Predicting Impacts of Climate Change on Sinjido Marine Food Web)

  • 강윤호;주세종;박영규
    • Ocean and Polar Research
    • /
    • 제34권2호
    • /
    • pp.239-251
    • /
    • 2012
  • The food web dynamics in a coastal ecosystem of Korea were predicted with Ecosim, a trophic flow model, under various scenarios of primary productivity due to ocean warming and ocean acidification. Changes in primary productivity were obtained from an earth system model 2.1 under A1B scenario of IPCC $CO_2$ emission and replaced for forcing functions on the phytoplankton group during the period between 2020 and 2100. Impacts of ocean acidification on species were represented in the model for gastropoda, bivalvia, echinodermata, crustacean and cephalopoda groups with effect sizes of conservative, medium and large. The model results show that the total biomass of invertebrate and fish groups decreases 5%, 11~28% and 14~27%, respectively, depending on primary productivity, ocean acidification and combined effects. In particular, the blenny group shows zero biomass at 2080. The zooplankton group shows a sudden increase at the same time, and finally reaches twice the baseline at 2100. On the other hand, the ecosystem attributes of the mean trophic level of the ecosystem, Shannon's H and Kempton's Q indexes show a similar reduction pattern to biomass change, indicating that total biomass, biodiversity and evenness shrink dynamically by impacts of climate change. It is expected from the model results that, after obtaining more information on climate change impacts on the species level, this study will be helpful for further investigation of the food web dynamics in the open seas around Korea.

Spatial Changes in Work Capacity for Occupations Vulnerable to Heat Stress: Potential Regional Impacts From Global Climate Change

  • Kim, Donghyun;Lee, Junbeom
    • Safety and Health at Work
    • /
    • 제11권1호
    • /
    • pp.1-9
    • /
    • 2020
  • Background: As the impact of climate change intensifies, exposure to heat stress will grow, leading to a loss of work capacity for vulnerable occupations and affecting individual labor decisions. This study estimates the future work capacity under the Representative Concentration Pathways 8.5 scenario and discusses its regional impacts on the occupational structure in the Republic of Korea. Methods: The data utilized for this study constitute the local wet bulb globe temperature from the Korea Meteorological Administration and information from the Korean Working Condition Survey from the Occupational Safety and Health Research Institute of Korea. Using these data, we classify the occupations vulnerable to heat stress and estimate future changes in work capacity at the local scale, considering the occupational structure. We then identify the spatial cluster of diminishing work capacity using exploratory spatial data analysis. Results: Our findings indicate that 52 occupations are at risk of heat stress, including machine operators and elementary laborers working in the construction, welding, metal, and mining industries. Moreover, spatial clusters with diminished work capacity appear in southwest Korea. Conclusion: Although previous studies investigated the work capacity associated with heat stress in terms of climatic impact, this study quantifies the local impacts due to the global risk of climate change. The results suggest the need for mainstreaming an adaptation policy related to work capacity in regional development strategies.

이상기후에 따른 건고추 생산농가의 총수입 변화 계측 (Economic Impacts of Abnormal Climate on Total Output of Red Pepper)

  • 조재환;서정민;강점순;홍창오;임우택;신현무;김운원
    • 한국환경과학회지
    • /
    • 제23권4호
    • /
    • pp.707-713
    • /
    • 2014
  • The purpose of this article is analyzing the economic impacts of abnormal climate on total revenue of red pepper in Korea, with employing the equilibrium displacement model. Our simulation results show the rate of yield change, price change, and total revenue change according to the climate change scenarios. In th case of by RCP 8.5 Scenario, red pepper production volume would be expected to decrease by 77.2% compared to 2012 while price increasing by 29.6%. As a result, total revenue to be returned to farmers would be reduced by 47.6% than it was in 2012. In contrast, total revenue would be expected to decline by 29.6% according to RCP 4.5 scenario.

Global environment change monitoring using the next generation satellite sensor, SGLI/GCOM-C

  • HONDA Yoshiaki
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.11-13
    • /
    • 2005
  • The Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) concluded that many collective observations gave a aspect of a global warming and other changes in the climate system. Future earth observation using satellite data should monitor global climate change, and should contribute to social benefits. Especially, human activities has given the big impacts to earth environment This is a very complex affair, and nature itself also impacts the clouds, namely the seasonal variations. JAXA (former NASDA) has the plan of the Global Change Observation Mission (GCOM) for monitoring of global environmental change. SGLI (Second Generation GLI) onboard GCOM-C (Climate) satellite, which is one of this mission, is an optical sensor from Near-UV to TIR. This sensor is the GLI follow-on sensor, which has the various new characteristics. Polarized/multi-directional channels and 250m resolution channels are the unique characteristics on this sensor. This sensor can be contributed to clarification of coastal change in sea surface. This paper shows the introduction of the unique aspects and characteristics of the next generation satellite sensor, SGLIIGCOM-C, and shows the preliminary research for this sensor.

  • PDF

우리나라 상세 기후변화 시나리오의 지역별 기온 전망 범위 - RCP4.5, 8.5를 중심으로 - (Variance Analysis of RCP4.5 and 8.5 Ensemble Climate Scenarios for Surface Temperature in South Korea)

  • 한지현;심창섭;김재욱
    • 한국기후변화학회지
    • /
    • 제9권1호
    • /
    • pp.103-115
    • /
    • 2018
  • The uncertainty of climate scenarios, as initial information, is one of the significant factors among uncertainties of climate change impacts and vulnerability assessments. In this sense, the quantification of the uncertainty of climate scenarios is essential to understanding these assessments of impacts and vulnerability for adaptation to climate change. Here we quantified the precision of surface temperature of ensemble scenarios (high resolution (1km) RCP4.5 and 8.5) provided by Korea Meteorological Administration, with spatiotemporal variation of the standard deviation of them. From 2021 to 2050, the annual increase rate of RCP8.5 was higher than that of RCP4.5 while the annual variation of RCP8.5 was lower than that of RCP4.5. The standard deviations of ensemble scenarios are higher in summer and winter, particularly in July and January, when the extreme weather events could occur. In general, the uncertainty of ensemble scenarios in summer were lower than those in winter. In spatial distribution, the standard deviation of ensemble scenarios in Seoul Metropolitan Area is relatively higher than other provinces, while that of Yeongnam area is lower than other provinces. In winter, the standard deviations of ensemble scenarios of RCP4.5 and 8.5 in January are higher than those of December. Especially, the standard deviation of ensemble scenarios is higher in the central regions including Gyeonggi, and Gangwon, where the mean surface temperature is lower than southern regions along with Chungbuk. Such differences in precisions of climate ensemble scenarios imply that those uncertainty information should be taken into account for the implementation of national climate change policy.

A1B 기후변화시나리오에 따른 미래 겉보리 잠재생산성 변화 예측 (Assessing Impacts of Temperature and Carbon Dioxide Based on A1B Climate Change Scenario on Potential Yield of Winter Covered Barley in Korea)

  • 심교문;이덕배;민성현;김건엽;정현철;이슬비;강기경
    • 한국기후변화학회지
    • /
    • 제2권4호
    • /
    • pp.317-331
    • /
    • 2011
  • 보리 생육모형인 DSSAT의 CERES-Barley를 적용하여, 한반도 A1B 기후변화시나리오에 따른 겉보리의 잠재생산량을 평가하였다. 생육 모의 지역은 30년 평년의 기상자료가 구축되어 있는 56개 지역으로 하였고, 생육 모의 연도는 기준연도(1971~2000년)와 3가지 미래 30년 평년(2011~2040년, 2041~2070년, 2071~2100년)으로 하였다. 그리고 온도효과 분석(온도 변화, $CO_2$ 농도 고정), $CO_2$효과 분석(온도 고정, $CO_2$ 농도 변화), 온난화효과 분석(온도 및 $CO_2$ 농도 변화) 등 3가지 생육모의 환경으로 구분하여 기후변화에 따른 겉보리의 잠재생산성 영향을 평가하였다. CERES-Barly 모형은 국내 겉보리의 발육단계뿐 아니라 수량을 실제 관측값과 아주 유사하게 모의하여($R^2=0.84$), 기후변화에 따른 겉보리의 잠재생산성 변화 예측에 활용하는데 무리가 없다고 판단되었다. 생육 모의 조건별 결과를 나타내면, (1) 온도효과 분석에서, 미래의 온도상승이 상대적으로 낮은 2011~ 2040년 생육 모의 연도의 잠재수량은 기준년도와 비슷한 반면에, 온도상승 정도가 큰 2041~2070, 2071~2100년의 미래 기후조건에서는 잠재수량이 기준년도에 비해 각각 6, 20%씩 감소하였다. 다음으로, (2) $CO_2$ 효과 분석에서, 3가지 미래 기후조건(2011~2040년, 2041~2070년, 2071~2100년)에서 겉보리의 평균 잠재수량이 기준년도에 비해 각각 12, 28, 43%씩 증가하였다. 마지막으로 (3) 온난화효과 분석에서, 미래 생육 모의 연도별(2011~2040년, 2041~2070년, 2071~2100년) 잠재수량은 기준년도에 비해 각각 13, 21, 19%씩 증가하였다.

기후변화에 대한 생태계 적응전략 (Environmental Implications of an Increasingly Erratic Climate)

  • 에스 엘윈 테일러
    • 한국농림기상학회지
    • /
    • 제8권1호
    • /
    • pp.22-27
    • /
    • 2006
  • 최근 수십년간 관측자료에 의하면 기후는 여러 측면에서 눈에 띄게 달라졌다. 이제는 관측이래 최고기온 혹은 최대강수량이란 단어가 그렇게 낯설지않은 시대가 되었고 앞으로의 변화와 그 여파에 더욱 긴장하며 살고 있다. 하지만 기후변화와 그 영향을 조금만 잘 이해하면 생태, 사회, 경제적 영향 가운데 우리가 충분히 받아들일 수 있는 부분도 상당하다. 식물과 자연생태계는 기후변화에 적응할 수 있는 다양한 방법을 이미 우리에게 보여주었다. 지구온난화에 의해 우리의 기후는 더욱 예측불허의 혼란에 빠질 것으로 보인다. 이 논문을 통해 역사적인 기후이변사례와 식물의 적응전략을 찾아보며, 인류가 기후변화를 극복하고 생태계를 유지하기 위해 보여주었거나 혹은 그렇지 못했던 사례에 대해 설명한다.

SSP 시나리오를 고려한 농업용 저수지의 이수측면 잠재영향평가 (Assessment of the Potential Impact of Climate Change on the Drought in Agricultural Reservoirs under SSP Scenarios)

  • 김시호;장민원;황세운
    • 한국농공학회논문집
    • /
    • 제66권2호
    • /
    • pp.35-52
    • /
    • 2024
  • This study conducted an assessment of potential impacts on the drought in agricultural reservoirs using the recently proposed SSP (Shared Socioeconomic Pathways) scenarios by IPCC (Intergovernmental Panel on Climate Change). This study assesses the potential impact of climate change on agricultural water resources and infrastructure vulnerability within Gyeongsangnam-do, focusing on 15 agricultural reservoirs. The assessment was based on the KRC (Korea Rural Community Corporation) 1st vulnerability assessment methodology using RCP scenarios for 2021. However, there are limitations due to the necessity for climate impact assessments based on the latest climate information and the uncertainties associated with using a single scenario from national standard scenarios. Therefore, we applied the 13 GCM (General Circulation Model) outputs based on the newly introduced SSP scenarios. Furthermore, due to difficulties in data acquisiton, we reassessed potential impacts by redistributing weights for proxy variables. As a main result, with lower future potential impacts observed in areas with higher precipitation along the southern coast. Overall, the potential impacts increased for all reservoirs as we moved into the future, maintaining their relative rankings, yet showing no significant variability in the far future. Although the overall pattern of potential impacts aligns with previous evaluations, reevaluation under similar conditions with different spatial resolutions emphasizes the critical role of meteorological data spatial resolution in assessments. The results of this study are expected to improve the credibility and accuracy formulation of vulnerability employing more scientific predictions.

건물 및 재생에너지에 관한 미래의 기후변화 예측 (The expectation of future climate change in relation to buildings and renewable energy)

  • 이관호
    • 한국태양에너지학회 논문집
    • /
    • 제28권1호
    • /
    • pp.57-64
    • /
    • 2008
  • According to the Fourth Assessment Report of Intergovernmental Panel on Climate Change(IPCC) Working Group III, climate change is already in progress around the world, and it is necessary to execute mitigation in order to minimize adverse impacts. This paper suggests future climate change needs, employing IPCC Special Report on Emissions Scenarios(SRES) to predict temperature rises over the next 100 years. This information can be used to develop sustainable architecture applications for energy efficient buildings and renewable energy. Such climate changes could also affected the resent supplies of renewable energy sources. This paper discusses one recent Fourth Assessment Report of IPPC (Mitigation of Climate Change) and the Hadley Centre climate simulation of relevant data series for South Korea.