• Title/Summary/Keyword: climate change)

Search Result 6,508, Processing Time 0.036 seconds

A Study on the Data Driven Neural Network Model for the Prediction of Time Series Data: Application of Water Surface Elevation Forecasting in Hangang River Bridge (시계열 자료의 예측을 위한 자료 기반 신경망 모델에 관한 연구: 한강대교 수위예측 적용)

  • Yoo, Hyungju;Lee, Seung Oh;Choi, Seohye;Park, Moonhyung
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.2
    • /
    • pp.73-82
    • /
    • 2019
  • Recently, as the occurrence frequency of sudden floods due to climate change increased, the flood damage on riverside social infrastructures was extended so that there has been a threat of overflow. Therefore, a rapid prediction of potential flooding in riverside social infrastructure is necessary for administrators. However, most current flood forecasting models including hydraulic model have limitations which are the high accuracy of numerical results but longer simulation time. To alleviate such limitation, data driven models using artificial neural network have been widely used. However, there is a limitation that the existing models can not consider the time-series parameters. In this study the water surface elevation of the Hangang River bridge was predicted using the NARX model considering the time-series parameter. And the results of the ANN and RNN models are compared with the NARX model to determine the suitability of NARX model. Using the 10-year hydrological data from 2009 to 2018, 70% of the hydrological data were used for learning and 15% was used for testing and evaluation respectively. As a result of predicting the water surface elevation after 3 hours from the Hangang River bridge in 2018, the ANN, RNN and NARX models for RMSE were 0.20 m, 0.11 m, and 0.09 m, respectively, and 0.12 m, 0.06 m, and 0.05 m for MAE, and 1.56 m, 0.55 m and 0.10 m for peak errors respectively. By analyzing the error of the prediction results considering the time-series parameters, the NARX model is most suitable for predicting water surface elevation. This is because the NARX model can learn the trend of the time series data and also can derive the accurate prediction value even in the high water surface elevation prediction by using the hyperbolic tangent and Rectified Linear Unit function as an activation function. However, the NARX model has a limit to generate a vanishing gradient as the sequence length becomes longer. In the future, the accuracy of the water surface elevation prediction will be examined by using the LSTM model.

On Securing Continuity of Long-Term Observational Eddy Flux Data: Field Intercomparison between Open- and Enclosed-Path Gas Analyzers (장기 관측 에디 플럭스 자료의 연속성 확보에 대하여: 개회로 및 봉폐회로 기체분석기의 야외 상호 비교)

  • Kang, Minseok;Kim, Joon;Yang, Hyunyoung;Lim, Jong-Hwan;Chun, Jung-Hwa;Moon, Minkyu
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.3
    • /
    • pp.135-145
    • /
    • 2019
  • Analysis of a long cycle or a trend of time series data based on a long-term observation would require comparability between data observed in the past and the present. In the present study, we proposed an approach to ensure the compatibility among the instruments used for the long-term observation, which would allow to secure continuity of the data. An open-path gas analyzer (Model LI-7500, LI-COR, Inc., USA) has been used for eddy covariance flux measurement in the Gwangneung deciduous forest for more than 10 years. The open-path gas analyzer was replaced by an enclosed-path gas analyzer (Model EC155, Campbell Scientific, Inc., USA) in July 2015. Before completely replacing the gas analyzer, the carbon dioxide ($CO_2$) and latent heat fluxes were collected using both gas analyzers simultaneously during a five-month period from August to December in 2015. It was found that the $CO_2$ fluxes were not significantly different between the gas analyzers under the condition that the daily mean temperature was higher than $0^{\circ}C$. However, the $CO_2$ flux measured by the open-path gas analyzer was negatively biased (from positive sign, i.e., carbon source, to 0 or negative sign, i.e., carbon neutral or sink) due to the instrument surface heating under the condition that the daily mean temperature was lower than $0^{\circ}C$. Despite applying the frequency response correction associated with tube attenuation of water vapor, the latent heat flux measured by the enclosed-path gas analyzer was on average 9% smaller than that measured by the open-path gas analyzer, which resulted in >20% difference of the sums over the study period. These results indicated that application of the additional air density correction would be needed due to the instrument heat and analysis of the long-term observational flux data would be facilitated by understanding the underestimation tendency of latent heat flux measurements by an enclosed-path gas analyzer.

Estimation of freeze damage risk according to developmental stage of fruit flower buds in spring (봄철 과수 꽃눈 발육 수준에 따른 저온해 위험도 산정)

  • Kim, Jin-Hee;Kim, Dae-jun;Kim, Soo-ock;Yun, Eun-jeong;Ju, Okjung;Park, Jong Sun;Shin, Yong Soon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.1
    • /
    • pp.55-64
    • /
    • 2019
  • The flowering seasons can be advanced due to climate change that would cause an abnormally warm winter. Such warm winter would increase the frequency of crop damages resulted from sudden occurrences of low temperature before and after the vegetative growth stages, e.g., the period from germination to flowering. The degree and pattern of freezing damage would differ by the development stage of each individual fruit tree even in an orchard. A critical temperature, e.g., killing temperature, has been used to predict freeze damage by low-temperature conditions under the assumption that such damage would be associated with the development stage of a fruit flower bud. However, it would be challenging to apply the critical temperature to a region where spatial variation in temperature would be considerably high. In the present study, a phenological model was used to estimate major bud development stages, which would be useful for prediction of regional risks for the freeze damages. We also derived a linear function to calculate a probabilistic freeze risk in spring, which can quantitatively evaluate the risk level based solely on forecasted weather data. We calculated the dates of freeze damage occurrences and spatial risk distribution according to main production areas by applying the spring freeze risk function to apple, peach, and pear crops in 2018. It was predicted that the most extensive low-temperature associated freeze damage could have occurred on April 8. It was also found that the risk function was useful to identify the main production areas where the greatest damage to a given crop could occur. These results suggest that the freezing damage associated with the occurrence of low-temperature events could decrease providing early warning for growers to respond abnormal weather conditions for their farm.

The Current State and Characteristics of Ornamental Grasses in South Korea (국내 유통 관상용 그라스의 현황 및 특징 분석)

  • Kim, Janghun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.5
    • /
    • pp.151-162
    • /
    • 2021
  • The recent trend of using ornamental grasses as essential landscaping plants has become more prominent, while the demands for today's gardens are to solve the challenges of climate change, biodiversity loss, and urban ecosystem services. Nowadays, the interest in ornamental grasses in South Korea is dramatically increasing, as is the number of available species and varieties. To find the better use of ornamental grasses in urban green spaces, more research should be conducted to understand the current state of ornamental grasses and their characteristics in South Korea. and a practical way of applying ornamental grasses to urban gardens should be devised. For that purpose, this research carried out a survey on the current state of ornamental grasses distributed in the landscaping plants market in South Korea. The grasses were analyzed according to the growing conditions, including habitats, ecological, and horticultural growth characteristics. As a result, 40 genera, 104 species, and 264 taxa of ornamental grasses were verified to be distributed in the market for garden plants in South Korea in August 2021. Poaceae and Cyperaceae are 69.7% and 28.4% among them, respectively. Juncaceae and Typhaceae are of little importance. No Restionaceae is supplied yet. Most of the Poaceae ornamental grasses prefer sunny open land, but others from various habitats are used too. The majority of the Cyperaceae ornamental grasses originate from woodlands, woodland edges, water's edges, and marshes. The market supplies fourteen genera of cool-season and sixteen genera of warm-season grasses. According to life-types of grasses, thirty-eight species are evergreens or semi-evergreens. Thirty-four species are deciduous. Seven species are summer-dormant. According to the growth habits of the grasses, thirty-three species are runners and fifty-one species are clumpers. There are fifteen taxa of ornamental grasses recently selected that have become native grasses.

Growth and Useful Component of Angelica gigas Nakai under High Temperature Stress (고온 스트레스에 따른 참당귀의 생육 및 유용성분 특성)

  • Jeong, Dae Hui;Kim, Ki Yoon;Park, Sung Hyuk;Jung, Chung Ryul;Jeon, Kwon Seok;Park, Hong Woo
    • Korean Journal of Plant Resources
    • /
    • v.34 no.4
    • /
    • pp.287-296
    • /
    • 2021
  • Recently, the pace of global climate change has tremendously increased, causing extreme damage to crop production. Here, we aimed to examine the growth characteristics and useful components of Angelica gigas under extreme heat stress, providing fundamental data for its efficient cultivation. Plants were exposed to various experimental temperatures (28℃, 34℃, and 40℃), and their growth characteristics and content of useful components were analyzed. At the experimental site, the ambient and soil temperature were 19.38℃ and 21.34℃, ambient and soil humidity were 81.3 % and 0.18 m3/m3, solar radiation was 162.05 W/m2. Moreover, the soil was sandy-clay-loam (pH 6.65), with 2.66% organic matter, 868.52 mg/kg soil available phosphate, and 0.14% nitrogen. Values of most growth characteristics, including the survival rate (85%), plant height (38.66cm), and fresh and dry weight (41.3 g and 14.24 g), were the highest at 28℃. Although the highest content of useful components was observed at 34℃ (3.24%), there were no significant differences across temperatures. Growth characteristics varied across temperatures due to detrimental effects of heat stress, such as accelerated tissue aging, reduced photosynthesis, and delay of growth. Similar content of useful components across temperatures may be due to poor accumulation of anabolic products caused by impaired growth at extremely high temperatures.

The Optimal Operation on Auxiliary Spillway to Minimize the Flood Damage in Downstream River with Various Outflow Conditions (하류하천의 영향 최소화를 위한 보조 여수로 최적 활용방안 검토)

  • Yoo, Hyung Ju;Joo, Sung Sik;Kwon, Beom Jae;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.2
    • /
    • pp.61-75
    • /
    • 2021
  • Recently, as the occurrence frequency of sudden floods due to climate change increased and the aging of the existing spillway, it is necessary to establish a plan to utilize an auxiliary spillway to minimize the flood damage of downstream rivers. Most studies have been conducted on the review of flow characteristics according to the operation of auxiliary spillway through the hydraulic experiments and numerical modeling. However, the studies on examination of flood damage in the downstream rivers and the stability of the revetment according to the operation of the auxiliary spillway were relatively insufficient in the literature. In this study, the stability of the revetment on the downstream river according to the outflow conditions of the existing and auxiliary spillway was examined by using 3D numerical model, FLOW-3D. The velocity, water surface elevation and shear stress results of FLOW-3D were compared with the permissible velocity and shear stress of design criteria. It was assumed the sluice gate was fully opened. As a result of numerical simulations of various auxiliary spillway operations during flood season, the single operation of the auxiliary spillway showed the reduction effect of maximum velocity and the water surface elevation compared with the single operation of the existing spillway. The stability of the revetment on downstream was satisfied under the condition of outflow less than 45% of the design flood discharge. However, the potential overtopping damage was confirmed in the case of exceeding the 45% of the design flood discharge. Therefore, the simultaneous operation with the existing spillway was important to ensure the stability on design flood discharge condition. As a result of examining the allocation ratio and the total allowable outflow, the reduction effect of maximum velocity was confirmed on the condition, where the amount of outflow on auxiliary spillway was more than that on existing spillway. It is because the flow of downstream rivers was concentrated in the center due to the outflow of existing spillway. The permissible velocity and shear stress were satisfied under the condition of less than 77% of the design flood discharge with simultaneous operation. It was found that the flood damage of downstream rivers can be minimized by setting the amount allocated to the auxiliary spillway to be larger than the amount allocated to the existing spillway for the total outflow with simultaneous operation condition. However, this study only reviewed the flow characteristics around the revetment according to the outflow of spillway under the full opening of the sluice gate condition. Therefore, the various sluice opening conditions and outflow scenarios will be asked to derive more efficient utilization of the auxiliary spillway in th future.

Global Rice Production, Consumption and Trade: Trends and Future Directions

  • Bhandari, Humnath
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2019.09a
    • /
    • pp.5-5
    • /
    • 2019
  • The objectives of this paper are (i) to analyze past trends and future directions of rice production, consumption and trade across the world and (ii) to discuss emerging challenges and future directions in the global rice industry. Rice is a staple food of over half of the world's 7.7 billion people. It is an important economic, social, political, and cultural commodity in most Asian countries. Rice is the $1^{st}$ most widely consumed, $2^{nd}$ largely produced, and $3^{rd}$ most widely grown food crop in the world. It was cultivated by 144 million farms in over 100 countries with harvested area of over 163 million ha producing about 745 million tons paddy in 2018. About 90% of the total rice is produced in Asia. China and India, the biggest rice producers, account for over half of the world's rice production. Between 1960 and 2018, world rice production increased over threefold from 221 to 745 million tons (2.1% per year) due to area expansion from 120 to 163 million ha (0.5% per year) and paddy yield increase from 1.8 to 4.6 t/ha (1.6% per year). The Green Revolution led massive increase in rice production prevented famines, provided food for millions of people, reduced poverty and hunger, and improved livelihoods of millions of Asians. The future increase in rice production must come from yield increase as the scope for area expansion is limited. Rice is the most widely consumed food crop. The world's average per capita milled rice consumption is 64 kilograms providing 19% of daily calories. Asia accounted for 84% of global consumption followed by Africa (7%), South America (3%), and the Middle East (2%). Asia's per capita rice consumption is 100 kilograms per year providing 28% of daily calories. The global and Asian per capita consumption increased from the 1960s to the 1990s but stable afterward. The per capita rice consumption is expected to decline in Asia but increase outside Asia especially in Africa in the future. The total milled rice consumption was about 490 million tons in 2018 and projected to reach 550 million tons by 2030 and 590 million tons by 2040. Rice is thinly traded in international market because it is a highly protected commodity. Only about 9% of the total production is traded in global rice market. However, the volume of global rice trade has increased over six-fold from 7.5 to 46.5 million tons between the 1960s and 2018. A relatively small number of exporting countries interact with a large number of importing countries. The top five rice exporting countries are India, Thailand, Vietnam, Pakistan, and China accounting for 74% of the global rice export. The top five rice importing countries are China, Philippines, Nigeria, European Union and Saudi Arabia accounting for 26% of the global rice import. Within rice varieties, Japonica rice accounts for the highest share of the global rice trade (about 12%) followed by Basmati rice (about 10%). The high concentration of exports to a few countries makes international rice market vulnerable to supply disruptions in exporting countries, leading to higher world prices of rice. The export price of Thai 5% broken rice increased from 198 US$/ton in 2000 to 421 US$/ton in 2018. The volumes of trade and rice prices in the global market are expected to increase in the future. The major future challenges of the rice industry are increasing demand due to population growth, rising demand in Africa, economic growth and diet diversification, competition for natural resources (land and water), labor scarcity, climate change and natural hazards, poverty and inequality, hunger and malnutrition, urbanization, low income in rice farming, yield saturation, aging of farmers, feminization of agriculture, health and environmental concerns, improving value chains, and shifting donor priorities away from agriculture. At the same time, new opportunities are available due to access to new technologies, increased investment by the private sector, and increased global partnership. More investment in rice research and development is needed to develop and disseminate innovative technologies and practices to overcome problems and ensure food and nutrition security of the future population.

  • PDF

Christian Education with the Socially Disadvantaged in and after the Covid-19 Pandemic (사회적 약자와 함께 하는 기독교교육)

  • Kim, Doil
    • Journal of Christian Education in Korea
    • /
    • v.64
    • /
    • pp.51-79
    • /
    • 2020
  • This study was conducted to pursue Christian education with the socially underprivileged in the era of the Corona-19 pandemic. Corona-19 is a disaster which is caused, destroyed and exploited by human being. At the time of the indiscriminately spreading global pendemic, we must work together to overcome our selfish self-centeredness and make an attempt for everyone in need. It is a study on how humans can help each other survive in the era of Corona-19 and its post-corona. The problem is that there is too much discrimination between the state, race, and economic capacity, and in the end, the extreme discrimination of capitalism is appeared in society and across the country. There is no significant difference in the confirmation rate when Corona-19 infiltrates, but there is a big difference between those with and less in mortality. As a result, today's reality is that people who have a hard time living because they have less usually are far more vulnerable to blocking and defeating virus attacks. Unfortunately, this is the current situation. From the standpoint of a large discourse, attention is paid to climate change and ecological environment, and as a micro discourse, a number of societies who live with tremendous discrimination according to the gap between the rich and the poor (it is gender, race, disabled, nationality) that exist in almost all countries on the planet. We need attention to the weak. To this end, discourses on vaccine inequality, discourses on the needs of the disabled, discourses on different racial damages, discourses on polarization and dystopia, and discourses on educational inequality were treated as the reality faced by the socially underprivileged in the Corona 19 pandemic. To explore Christian education with the socially underprivileged, to explore ways of sharing, giving, and solidarity for win-win, discourse on inter-dependence and mutual responsibility of mankind, direct counter-measures for the socially underprivileged, and critical literacy education. He proposed a discourse on Korea, a discourse on Homo sapiens, which must return to being a part of creation, and finally a theology of friendship with the weak. Christian education based on Bible words must go forward in the era of the Corona 19 pandemic, hungry, naked, nowhere to go, sick, but dying because of being unable to get a remedy. He emphasized the need to establish a caring theology of friendship and pursue a life in which thought and practice harmonize. Thus, the paper proposed the spirit of Christian education not only doing something for the socially weak, but with the socially weak in the daily life.

A Study on the Thermal Solubilization Characteristics of Highly Thickened Excess Sludge in Municipal Wastewater Treatment Plant (하수처리장에서 발생하는 고농축 잉여슬러지의 열적가용화 특성에 관한 연구)

  • Kim, Eunhyuk;Park, Myoung Soo;Koo, Seulki
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.4
    • /
    • pp.5-13
    • /
    • 2022
  • The current environmental problem is that environmental pollution is accelerating due to the generation of large amounts of waste and indiscriminate consumption of energy. Fossil fuels, a representative energy production fuel, are burned in the process of producing energy, generating a large amount of greenhouse gases and eventually causing climate change. In addition, the amount of waste generated worldwide is continuously increasing, and environmental pollution is occurring in the process of waste treatment. One of the methods for simultaneously solving these problems is the energy recovery from and reduction of organic wastes. Sewage sludge generated in sewage treatment plants has been treated in various ways since ocean disposal was completely prohibited, but the amount generated has been continuously increasing. Since the sewage sludge contains a large amount of organic materials, it is desirable to recover energy from the sewage sludge and reduce the final discharged waste through anaerobic digestion. However, most of the excess sludge is a mass of microorganisms used in sewage treatment, and in order for the excess sludge to be anaerobically digested, the cell walls of the microorganisms must be destroyed first, but it takes a lot of time to destroy the cell walls, so high rates of biogas production and waste reduction cannot be achieved only by anaerobic digestion. Therefore, the pre-treatment process of solubilizing excess sludge is required, and the thermal solubilization process is verified to be the most efficient among various solubilization methods, and high rates of biogas production and waste reduction can be achieved by anaerobic digestion after destroying cell walls the thermal solubilization process. In this study, when pretreating TS 10% thickened excess sludge through a thermal solubilization system, a study was conducted on solubilization characteristics according to retention time and operating temperature variables. The experimental variables for the retention time of the thermal solubilization system were 30 minutes, 60 minutes, 90 minutes, and 120 minutes, respectively, while the operating temperature was fixed at 160℃. The soulbilization rates calculated through TCOD and SCOD derived from the experimental results increased in the order of 12.11%, 20.52%, 28.62%, and 31.40%, respectively. And the variables according to operating temperature were 120℃, 140℃, 160℃, 180℃, and 200℃, respectively, while the operating retention time was fixed at 60 minutes. And the solubilization rates increased in the order of 7.14%, 14.52%, 20.52%, 40.72%, and 57.85%, respectively. In addition, TS, VS, T-N, T-P, NH4+-N, and VFAs were analyzed to evaluate thermal solubilization characteristics of thickened excess sludge. As a result, in order to obtain 30% or more solubilization rate through thermal solubilization of TS 10% thickened excess sludge, 120 minutes of retention time is required when the operating temperature is fixed to 160℃, and 170℃ or more of operating temperature is needed when the operating time is fixed to 60 minutes.

Appearance Patterns of Freshwater Fish in Central Mountain Area of DMZ, Korea (중부산악 DMZ 민통선이북지역의 담수어류 출현양상)

  • Myung, Ra-Yeon;Seo, Hyung-Soo;Ko, Myeong-Hun
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.6
    • /
    • pp.530-542
    • /
    • 2020
  • This study surveyed the central mountain area of Demilitarized Zone (DMZ) from March to October 2018 to reveal the appearance patterns of freshwater fish. We collected 7,744 individuals of 43 species in 12 families with skimming nets and cast nets in 12 stations during the survey. The dominant species was Zacco koreanus (30.3%), and the subdominant species was Z. platypus (18.5%), followed by Rhynchocypris oxycephalus (10.0%), R. steindachneri (6.7%), Microphysogobio yaluensis (5.9%), Acheilognathus signifer (4.5%), Pungtungia herzi (4.2%), and Orthrias nudus (2.6%). Among the collected species, four were legally protected. They included Hemibarbus mylodon, which was a natural monument, and Lethenteron reissneri, A. signifer, and Pseudopungtungia tenuicorpa, which were class II endangered wildlife designated by the Ministry of Environment. Twenty Korean endemic species (46.5%) and one exotic species, Micropterus salmoides, were also collected. Additionally, three climate-change sensitive species, R. kumgangensis, Ladislavia taczanowskii, and Cottus koreanus, and three landlocked species, L. reissneri, C. koreanus, and Rhinogobius brunneus appeared. The dominant species in each station were Z. koreanus (15 stations), Z. platypus (four stations), R. oxycephalus (four stations), and C. koreanus (one station). The species dominance index decreased from upstream to downstream (mainstream of Gimhwanamdae Stream), while the species diversity index and the species richness index increased. The community structure of the rivers was divided into the uppermost stream, upper stream, Han River, and Imjin River. Compared to antecedent surveys, this study collected the highest number of species. Two new species (Sarcocheilichthys variegatus wakiyae and Micropterus salmoides) were caught, while six species (Siniperca scherzeri, Leiocassis ussuriensis, Brachymystax lenok tsinlingensis, Rhodeus ocellatus, Abbottina springeri, Aphyocypris chinensis) did not appear. Gimhwanamdaecheon Stream has high biological value with the inhabitation of many species, including species under legal protection and high diversity and richness index scores. This paper also discussed a protection plan for this area.