• Title/Summary/Keyword: climate chamber

Search Result 161, Processing Time 0.029 seconds

The Development of Winter Working Clothes for Stock Farming Worker (축산종사자를 위한 겨울용 농작업복 개발)

  • Hwang, Kyoung-Sook;Kim, Hyo-Cher;Chae, Hye-Seon;Lee, Kyung-Suk
    • The Korean Journal of Community Living Science
    • /
    • v.20 no.4
    • /
    • pp.515-522
    • /
    • 2009
  • This study was to develope the functional work clothing for livestock farmers. Major demanding performances for livestock work clothing are anti-soil and anti-bacterial properties. On surveys, functional fabrics that have anti-soil, anti-bacterial and waterrepellent performances were developed and the work clothing that have adaptability to body movements were manufactured. The designs of livestock working clothes were two piece and one piece with rubber bade in waist. The thermal responses of subjects wearing the winter working clothes for stock farming worker were measured in the climate chamber($17^{\circ}C$, 40% R.H.). The main results were summarized as follows: Total body weight loss was smaller and the mean skin temperature was higher in developed clothes than the market product. Clothing micro-climate of developed clothes was lower than the market clothes. Subjective sensation did not have significant differences. From the results of various evaluation, developed garments for livestock workers showed better efficiency than the market product.

  • PDF

The Effects of Season on Physiological Responses of Human Body, Clothing Microclimate, and Subjective Sensations (인체의 생리적 반응과 의복 기후, 주관적 감각에 미친 계절의 영향)

  • 김양원
    • Journal of the Korean Home Economics Association
    • /
    • v.30 no.4
    • /
    • pp.15-26
    • /
    • 1992
  • To investigate the seasonal effects on physiological responses of human body, clothing micro-climate, and subjective sensation, selected the cloths the most frequently dressed by men in spring and fall, and completed wearing trials in the climatic chamber. The results are as follows: 1. Rectal temp. ranged 36.8-37.1$^{\circ}C$ in either spring or fall, and no seasonal effect was found. 2. In skin temp., there was no seasonal effect in forehead, abdomen, and forearm. Skin temp. of chest was higher in spring than in fall. On the contrary, reverse was true in high and leg. Average skin temp. ranged 32.2-33.2$^{\circ}C$ in spring and 32.9-34.$0^{\circ}C$ in fall. 3. Average total sweat rate of spring, 79.4g/hr, was smaller than that of fall, 110.9g/hr. 4. Clothing temp. ranged 28.1-32.8$^{\circ}C$ in spring and 27.6-31.$0^{\circ}C$ in fall. Clothing humidity ranged 36.9-48.9% in spring and 38.2-51.1% in fall. Therefore, clothing microclimate was higher during fall than during spring. As results, skin temp. of the body core except chest did not show seasonal variation, but there was obvious seasonal variation in skin temp. of the extremities. Therefore, seasonal variation should be take into consideration in the experiments related to the cloth. In addition, standard for each season and the degree of work performance should be re-established in clothing micro-climate.

  • PDF

Decreases Nitrous Oxide Emission and Increase Soil Carbon via Carbonized Biomass Application of Orchard Soil (과수원 토양의 탄화물 시용에 따른 아산화질소 발생량 감소와 토양탄소 증가효과)

  • Lee, Sun-il;Kim, Gun-yeob;Choi, Eun-jung;Lee, Jong-sik;Jung, Hyun-cheol
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.2
    • /
    • pp.73-79
    • /
    • 2017
  • BACKGROUND: Carbonized biomass is a carbon-rich solid product obtained by the pyrolysis of biomass. It has been suggested to mitigate climate change through increased carbon storage and reduction of greenhouse gas emission. The objective of this study was to evaluate carbon dioxide ($CO_2$) and nitrous oxide ($N_2O$) emissions from soil after carbonized biomass addition. METHODS AND RESULTS: The carbonized biomass was made from a pyrolyzer, which a reactor was operated about $400{\sim}500^{\circ}C$ for 5 hours. The treatments were consisted of a control without input of carbonized biomass and two levels of carbonized biomass inputs as 6.06 Mg/ha for CB-1 and 12.12 Mg/ha for CB-2. Emissions of $CO_2$ and $N_2O$ from orchard soil were determined using closed chamber for 13 weeks at $25^{\circ}C$ of incubation temperature. It was shown that the cumulative $CO_2$ were $209.4g\;CO_2/m^2$ for CB-1, $206.4g\;CO_2/m^2$ for CB-2 and $214.5g\;CO_2/m^2$ for the control after experimental periods. The cumulative $CO_2$ emission was similar in carbonized biomass input treatment compared to the control. It was appeared that cumulative $N_2O$ emissions were $4,478mg\;N_2O/m^2$ for control, $3,227mg\;N_2O/m^2$ for CB-1 and$ 2,324mg\;N_2O/m^2$ for CB-2 at the end of experiment. Cumulative $N_2O$ emission contents significantly decreased with increasing the carbonized biomass input. CONCLUSION: Consequently the carbonized biomass from byproducts such as pear branch residue could suppress the soil $N_2O$ emission. The results fromthe study imply that carbonized biomass can be utilized to reduce greenhouse gas emission from the orchard field.

The Physiological Responses of Material-improved Working Clothes for Construction Site Worker (건설현장 작업복의 소재 기능성 향상에 따른 생리반응)

  • Kim, Seong-Suk;Kim, Hee-Eun
    • Fashion & Textile Research Journal
    • /
    • v.13 no.5
    • /
    • pp.752-758
    • /
    • 2011
  • In this paper, experiments to develop working clothes and evaluated, including the current and material-improved working clothes in relation to physiological functionality measurement. Experiments were conducted on subjects after wearing working clothes in an climate chamber, and the thermo-physiological response, such as human body temperature, micro-climate within the clothes, blood pressure, heart rate were measured. In this manner, the physiological functionality of improved working clothes was compared with that of current working clothes and evaluated. The summary of obtained results is as follows: For physiological functionality evaluation through material-improved working clothes, P working clothes showed significantly lower rectal temperature than C working clothes. For mean skin temperature, P's skin temperature was significantly higher than C's in the second half of the experiment. P working clothes's temperature around the thighs in Micro climate was significantly lower than that of the C working clothes. Also, humidity within the clothes showed similar trends. During the exercise period, C working clothes showed higher blood pressure than P, but P showed higher heart rates than C. Also, the oxygen uptake amount was higher in C than P during the exercise period, it explains that the energy consumption amount of P working clothes was smaller than that of C working clothes. Of the subjective evaluation, for temperature sensation, workers wearing P working clothes felt cooler. For humidity, C working clothes showed more humidity. For comfort, P working clothes were better, and for sense of fatigue, workers felt less tired wearing P working clothes. From results above, we can see that physiological functionality improved in the material-improved working clothes in the working clothes for construction site workers. The improvement of working clothes through functionality improvements not only will provide personal pleasantness to constriction site workers, but will also generate efficiency and productivity improvements at construction sites. All in all, the continuous study of functionality improvements in working clothes taking into consideration the human body's physiological responses is required.

The Study on the Physiological Response in Wearing Sportswear in Two Different Environments

  • Kwon, Oh Kyung;Kim, Jin-A
    • Fashion & Textile Research Journal
    • /
    • v.2 no.5
    • /
    • pp.416-422
    • /
    • 2000
  • In this study, to find out the physiological reaction of the human body and the sensation of comfort when people are wearing sportswear which is made of waterproof breathable fabrics under general environmental conditions (temperature : $20{\pm}1^{\circ}C$, humidity : $60{\pm}5%RH$, air current : 0.1 m/sec) and rainy environmental conditions (temperature : $20{\pm}1^{\circ}C$, humidity : $60{\pm}5%RH$, air current : 0.1 m/sec, rainfall : 250 1/hr), we made an experiment with sportswear in an artificial climate chamber and studied the thermal physiological response and subjective sensation. Mean skin temperature of the subjects was low and had a big range of fluctuation in rainy environmental conditions of two condition. Temperature started to increase at the beginning of the exercise, reached the maximum at the 2nd level of the exercise and then started to decline. Rectal temperature showed a slighter increase and bigger range of fluctuation in general conditions than in rainy conditions. Except clothing micro climate in rainy conditions, temperature and humidity and their range of fluctuation around back were higher than those around chest. Humidity was high and had wide range of fluctuation in general conditions. Heart rate was 4.4 beats/min higher in general conditions. In subjective test on rainy conditions, the feeling of discomfort increased due to the raindrops fallen on the skin. Unlike that in general conditions, cold sensation increased and humidity sensation reached to the peak after the exercise. In wearing sportswear made of shape memory breathable waterproof fabric, controlling function over a small amount of heat and water was distinctive while it turned out to be not so comfortable over a large amount of heat and water. Through this, the limitation of shape memory breathable waterproof fabric was recognised.

  • PDF

The Study on Carbon Budget Assessment in Pear Orchard (배 재배지의 탄소수지 산정에 관한 연구)

  • Suh, Sanguk;Choi, Eunjung;Jeong, Hyuncheol;Lee, Jongsik;Kim, Gunyeob;Lee, Jaeseok;Sho, Kyuho
    • Korean Journal of Environmental Biology
    • /
    • v.33 no.3
    • /
    • pp.345-351
    • /
    • 2015
  • This study was conducted to find out the methodology of carbon budget assessment among soil, atmosphere and plant. Soil respiration, net ecosystem productivity of herbs and net ecosystem productivity of woody plants have been measured in 30 years old pear orchard at Naju. Closed Dynamic Chamber (CDC) method was used to measure soil respiration and net ecosystem productivity of herbs. Net ecosystem productivity of woody plant (pear) was determined by eddy covariance method using the EddyPro (5.2.1) program. As for soil respiration, $429.1mgCO_2m^{-2}h^{-1}$ was released to atmosphere and sensitivity of soil temperature ($Q_{10}$) was 2.3. In case of herbs, respiration was superior to photosynthesis during measurement period. From 20 to 24 Jun 2015, the sum of absorbed and released $CO_2$ by herb's photosynthesis and respiration was $156.1mgCO_2m^{-2}h^{-1}$. Woody plants showed the $680.1mgCO_2m^{-2}h^{-1}$ of absorption by photosynthesis. In a farm scale, the sum of soil respiration, and net ecosystem productivity of herbs and woody plants was $0.04tonCO_2ha^{-1}$ during the measurement period, and it showed that pear orchard act as a $CO_2$ sink. This study using various approaches is expected to present a methodology for evaluating the carbon budget of perennial woody crop plantations.

Removal Performance of Sticky Paint Aerosol Control System Generated from Small Scale Car Paint Overspray Booth (소형 자동차 페인트 도장부스에서 발생하는 점착성 paint aerosol 처리장치에서 제거성능)

  • Lee, Jae-Rang;Hasolli, Naim;Jeon, Seong-Min;Lee, Kang-San;Sohn, Jong-Ryeul;Park, Young-Ok
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.1
    • /
    • pp.54-62
    • /
    • 2015
  • Small scale paint overspray booths are being operated nationwidely, for repair of passenger car body parts. paint aerosols are emitted from the paint overspray booth in operations. In paint overspray booth operations without ventilation system and air pollutants collection unit, it may land on nearby equipment. In this study a removal of sticky paint aerosol for application of the small-scale overspray paint booth. it's cause the surface of filter bag from generated sticky paint aerosol. To remove adhesion of paint aerosol the agglomerating agents are injected and mixed with sticky paint aerosols prior to reach the filter bag. The paint spray rate was set as $10{\pm}5g/min$ from air-atomized spray guns in the spray booth, injection rate of agglomerating was $10{\pm}5g/min$ in the mixing chamber. The filtration velocity including air pollutants varied from 0.2 m/min to 0.4 m/min. Bag cleaning air pressure was set as $5.0kg_f/min$ for detaching dust cake from surface of filter bag. Bag cleaning interval at the filtration velocity of 0.2 m/min was around 3 times longer than that of the 0.4 m/min. The residual pressure drop maintained highest value at the highest filtration velocity. Fractional efficiency of 99.952%~99.971% was possible to maintain for the particle size of 2.5 microns. Total collection efficiency at the filtration velocity of 0.2 m/min was 99.42%. During this study we could confirm high collection efficiency and long cleaning intervals for the test with filtration velocity of 0.2 m/min indicating an optimal value for the given dimensions of the test unit and test operating conditions.

Review of Long-term Climate Change Research Facilities for Forests (기후변화 대응 산림의 장기 기후변화 연구시설)

  • Seo, Dong-Jin;Kim, Hyun-chul;Lee, Hyun Seok;Lee, Solji;Lee, Wi-Yeong;Han, Sim-Hee;Kang, Jun Won
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.274-286
    • /
    • 2016
  • Carbon dioxide ($CO_2$) accounts for about 72% of the total greenhouse gas emissions. It is also widely known as a major cause of global warming. According to the IPCC's fifth evaluation report, the growth rate of atmospheric $CO_2$ has increased by 35% for the last 100 years and global warming is occurring much more rapidly than expected since 1990s. As a result of climate change, global warming is increasing the frequency and severity of extreme weather events around the world, which has changed forest vegetation zone and vegetation phenology. The Kyoto Protocol recognizes the importance of forests and refers to the conservation and enhancement of forests as sinks and reservoirs of greenhouse gases. In this regard, studies of tree responses to climate change are indispensable for predicting changes in the forest ecosystems in the future. Therefore, studies using long-term climate change research facilities, associated with long-term ecological research (LTER) in the fields, will make a considerable contribution to predict and approach the changes in the future.

Photosynthesis Monitoring of Rice using SPAR System to Respond to Climate Change

  • Hyeonsoo Jang;Wan-Gyu Sang;Yun-Ho Lee;Hui-woo Lee;Pyeong Shin;Dae-Uk Kim;Jin-Hui Ryu;Jong-Tag Youn
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.169-169
    • /
    • 2022
  • Over the past 100 years, the global average temperature has risen by 0.75 ℃. The Korean Peninsula has risen by 1.8 ℃, more than twice the global average. According to the RCP 8.5 scenario, the CO2 concentration in 2100 will be 940 ppm, about twice as high as current. The National Institute of Crop Science(NICS) is using the SPAR (Soil-Plant Atmosphere Research) facility that can precisely control the environment, such as temperature, humidity, and CO2. A Python-based colony photosynthesis algorithm has been developed, and the carbon and nitrogen absorption rate of rice is evaluated by setting climate change conditions. In this experiment, Oryza Sativa cv. Shindongjin were planted at the SPAR facility on June 10 and cultivated according to the standard cultivation method. The temperature and CO2 settings are high temperature and high CO2 (current temperature+4.7℃ temperature+4.7℃·CO2 800ppm), high temperature single condition (current temperature+4.7℃·CO2 400ppm) according to the RCP8.5 scenario, Current climate is set as (current temperature·CO2400ppm). For colony photosynthesis measurement, a LI-820 CO2 sensor was installed in each chamber for setting the CO2 concentration and for measuring photosynthesis, respectively. The colony photosynthetic rate in the booting stage was greatest in a high temperature and CO2 environment, and the higher the nitrogen fertilization level, the higher the colony photosynthetic rate tends to be. The amount of photosynthesis tended to decrease under high temperature. In the high temperature and high CO2 environment, seed yields, the number of an ear, and 1000 seed weights tended to decrease compared to the current climate. The number of an ear also decreased under the high temperature. But yield tended to increase a little bit under the high temperature and high CO2 condition than under the high temperature. In addition, In addition to this study, it seems necessary to comprehensively consider the relationship between colony photosynthetic ability, metabolite reaction, and rice yield according to climate change.

  • PDF

Effects of Increasing Air Temperatures and CO2 Concentrations on Herbicide Efficacy of Acalypha australis and Phytotoxicity of Soybean Crops (대기온도와 CO2 농도 증가에 따른 우점잡초 깨풀의 제초제 약효 및 콩 약해 변화)

  • Hyo-Jin Lee;Hyun-Hwa Park;Ye-Geon Kim;Do-Jin Lee;Yong-In Kuk
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.3
    • /
    • pp.121-133
    • /
    • 2023
  • The purpose of this study was to improve weed management systems under varying carbon dioxide concentrations and temperatures by evaluating the growth of Acalypha australis and observing the efficacy of four foliar and four soil herbicides, as well as measuring phytotoxicity in soybean crops treated with these herbicides. In both growth chamber and greenhouse conditions, plant height and shoot fresh weight of Acalypha australis increased as temperature increased. The variable to maximum fluorescence ratio (Fv/Fm), relative electron transport rate (ETR), plant height, leaf area, and shoot fresh weight of Acalypha australis were higher at carbon dioxide concentrations of 800 ppm than at 400 ppm. The efficacy of a foliar herbicide, glufosinate, on Acalypha australis was lower at 30℃ than at 20℃ and 25℃ in the growth chamber condition and was also lower at 29℃ than at 21℃ and 25℃ in greenhouse conditions. In contrast, mecoprop efficacy on Acalypha australis was lower at 20℃ and 25℃ than at 30℃ in growth chamber conditions and lower at 21℃ and 25℃ than at 29℃ in greenhouse conditions. Glyphosate efficacy was lower at 21℃ than at 25℃ and 29℃ under greenhouse conditions. With soil herbicides, metolachlor and ethalfluraline, efficacies were higher at relatively high temperatures under both growth chamber and greenhouse conditions. However, in the case of linuron, the difference in efficacy was not observed under varying temperatures in both growth chamber and greenhouse conditions. When ¼ of the recommended glyphosate rates were applied to Acalypha australis, efficacy was lower under 800 ppm carbon dioxide concentrations than under 400 ppm. In contrast, when ¼ of the recommended rate of bentazone was applied to Acalypha australis, efficacy was higher under 800 ppm carbon dioxide concentrations than under 400 ppm. Despite application rates, glufosinate efficacy differed insignificantly under different carbon dioxide concentrations. When applied at ¼ of the recommended rate, the efficacy of ethalfuralin was higher under 800 ppm carbon dioxide concentrations than under 400 ppm. However, efficacies of other herbicides were not different despite varying carbon dioxide concentrations. Soybean phytotoxicity in crops treated with the recommended rate and twice the recommended rate of soil herbicides was not significantly different regardless of temperature and carbon dioxide concentrations. Overall, weed efficacy of some herbicides decreased in response to different temperatures and carbon dioxide concentrations. Therefore, new weed management methods are required to ensure high rates of weed control in conditions affected by climate change.