• Title/Summary/Keyword: clearing method

Search Result 133, Processing Time 0.027 seconds

New Reclosing Technique in Distribution System with Battery Energy Storage System (BESS가 연계된 배전계통에서 새로운 재폐로 기법)

  • Seo, Hun-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.1
    • /
    • pp.21-27
    • /
    • 2016
  • The study concerning about the grid connection of the large-capacity battery energy storage system(BESS) is increasing. However, the protection study which is necessary to maintain the reliability of distribution system has been hardly performed. Therefore, this paper analyzes the effect of reclosing among protection issues in distribution system with BESS and proposes the new relcosing method. To verify the proposed method, the BESS, distribution system, and proposed method are modeled by using EMTP/ATPDraw and the various simulations according to the fault clearing time are performed. The simulation results show that the reclosing in distribution system with BESS is successfully performed by proposed method and the operation of BESS is not affected from reclosing.

Investigation of the Estimation of Time-Varying Voltage Sags Considering the Short Circuit Contributions of Rotating Machines (회전기의 기여에 의한 시변성의 순간전압강하 예측에 관한 연구)

  • Yun Sang-Yun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.6
    • /
    • pp.315-322
    • /
    • 2005
  • In this article, 1 would like to explore the estimation method of time-varying voltage sags in large industrial systems considering the short circuit contributions of rotating machines. For the power distribution system of KEPCO(Korea Electric Power Corporation), the magnitude of initial symmetrical short circuit current is generally not changed. However, in industrial systems which contain a number of rotating machines, the magnitude of voltage sag is generally changed from the initial to the clearing time of a fault due to the decreasing contribution of rotating machines for a fault current. The time-varying characteristics of voltage sags can be calculated using a short circuit analysis that is considered the time-varying fault currents. For this, the prediction formulations of time-varying voltage sags are proposed using a foreign standard. The proposed method contains the consideration of generator and motor effects. For the test of proposed formulations, a simple system of industrial consumer is used for the comparison conventional and proposed estimation method of voltage sag characteristics.

Stability Analysis of Jeju Power System with Wind Turbine Generators and HVDC (풍력발전설비 및 HVDC가 도입된 제주도 계통에 대한 안정도 해석)

  • Kim, Do-Hyung;Kim, Jae-Eon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.1897-1904
    • /
    • 2008
  • In this paper, the method for effective stability analysis of Jeju power system in 2011 is proposed. The stability analysis of Jeju power system was carried out by using proposed method In case of Jeju power system with wind turbine generators or without wind turbine generators, including CSC HVDC or VSC HVDC. The steady-state stability is validated by SCR and ESCR, PV curve, QV curve. And the transient stability is analyzed by CCT(Critical Clearing Time). VSC HVDC has more advantages than CSV HVDC on the stability. Also, Jeju power system without wind turbine generators has more advantages than Jeju power system with Wind Turbine Generators on the stability.

An Efficient Revenue/Profit Evaluation Method Based on Probabilistic Production Costing Technique (확률적 운전비계산 모형에 기초한 발전기 수입/순익 평가 방법론 개발)

  • 박종배;신중린;김민수;전영환
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.12
    • /
    • pp.638-646
    • /
    • 2002
  • This paper presents an efficient algorithm for evaluating the Profit and revenue of generating units in a competitive electricity market based on the probabilistic production costing technique. The accurate evaluation of the profit and revenue of generating units for long-term perspectives is one of the most important issues in a competitive electricity market environment. For efficient calculation of the profit and revenue of generating units under the equivalent load duration curve(ELDC), a new approach to figure out the marginal plants and the corresponding market clearing prices during a time period in a probabilistic manner is developed. The mathematical formulation and illustrative application of the suggested method is presented.

A New Method to Handle Transmission Losses using LDFs in Electricity Market Operation

  • Ro Kyoung-Soo;Han Se-Young
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.2
    • /
    • pp.193-198
    • /
    • 2005
  • This paper proposes a new method to handle transmission line losses using loss distribution factors (LDF) rather than marginal loss factors (MLF) in electricity market operation. Under a competitive electricity market, the bidding data are adjusted to reflect transmission line losses. To date the most proposed approach is using MLFs. The MLFs are reflected to bidding prices and market clearing price during the trading and settlement of the electricity market. In the proposed algorithm, the LDFs are reflected to bidding quantities and actual generations/ loads. Computer simulations on a 9-bus sample system will verify the effectiveness of the algorithm proposed. Moreover, the proposed approach using LDFs does not make any payments residual while the approach using MLFs induces payments residual.

Analytical Study on the Discharge Transients of a Steam Discharging Pipe (증기방출배관의 급격과도현상에 대한 해석적 연구)

  • 조봉현;김환열;강형석;배윤영;이계복
    • Journal of Energy Engineering
    • /
    • v.7 no.2
    • /
    • pp.202-208
    • /
    • 1998
  • As in the other industrial processes, a nuclear power plant involves a steam relieving process through which condensable steam is discharged and condensed in a subcooled pool. An analysis of steam discharge transients was carried out using the method of characteristics to determine the flow characteristics and dynamic loads of piping that are used for structural design of the piping and its supports. The analysis included not only the steam flow rate but also the flow rates of the air and water which originally exist in the pipe. The analytical model was developed for a uniform pipe with friction through which the flow was discharged into a suppression pool. Including the combinations of system elements such as reservoir, valve and branching pipe lines. The piping flow characteristics and dynamic loads were calculated by varying system pressure, pipe length, and submergence depth. It was found that the dynamic load, water clearing time and water clearing velocity at the water/air interface were dependent not only on the system pressure and temperature but also on the pipe length and submergence depth.

  • PDF

The Development of the Transmission Marginal Loss Factors with Consideration of the Reactive Power and its Application to Energy Spot Market (무효전력을 고려한 한계송전손실계수 산정 방법론 개발 및 현물시장에의 적용)

  • 박종배;이기송;신중린;김성수
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.7
    • /
    • pp.429-436
    • /
    • 2003
  • This paper presents a new approach for evaluating the transmission marginal loss factors (MLFs) considering the reactive power. Generally, MLFs are represented as the sensitivity of transmission losses, which is computed from the change of the generation at reference bus by the change of the load at the arbitrary bus-i. The conventional evaluation method for MLFs uses the only H matrix, which is a part of jacobian matrix. Therefore, the MLFs computed by the existing method, don't consider the effect of the reactive power, although the transmission losses are a function of the reactive power as well as the active power. To compensate the limits of the existing method for evaluating MLFs, the power factor at the bus-i is introduced for reflecting the effect of the reactive power in the evaluation method of the MLFs. Also, MLFs calculated by the developed method are applied to energy spot markets to reflect the impacts of reactive power. This method is tested with the sample system with 5-bus, and analyzed how much MLFs have an effect on the bidding/offer price, market clearing price(MCP), and settlement in the competitive energy spot market. This paper compared the results of MLFs calculated by the existing and proposed method for the IEEE 14-bus system, and the KEPCO system.

Transient Stability assessment in the real power system using Energy Function. (에너지함수를 이용한 실계통에의 과도 안정도 평가 적용)

  • Kwon, Tae-Won;Lee, Kyung-Jae;Lee, Byung-Ha;Ham, Wan-Kyun
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.153-156
    • /
    • 1992
  • Transient stability analysis of Korea Electric power Corporation(KEPCO) system is conducted by time simulation method, and the method is robust and reliable. But, time simulation consumes enormous computing resources and engineering time, and it does not provide a measure of the degree of stability of the system. Therefore, this method does not apply to every changed condition appropriately and quickly in planning and operating. And Transient Energy Function (TEF) method whis can assess quickly and quantatively the degree of stability of the system and which judges the stability and the instability to analyse transient dynamic charater of the system by mutual changing kinetic energy and potential energy, is developed. TEF method analyses the first Swing transient stability of the system by using the thought that if after disturbance happening, the increase of all the rotator kinetic energy changes into the potential energy after diturbance clearing, the system is stable, otherwise the system is unstable. This paper represents the availabiIity of the TEF method by comparing with time simulation method on the two cases.

  • PDF

Unified Reliability and Its Cost Evaluation in Power Distribution Systems Considering the Voltage Magnitude Quality and Demand Varying Load Model (전압 크기의 품질 및 전력수요 변동모델을 고려한 배전계통의 통합적인 신뢰도 및 비용 평가)

  • Yun, Sang-Yun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.12
    • /
    • pp.705-712
    • /
    • 2003
  • In this paper, we propose new unified methodologies of reliability and its cost evaluation in power distribution systems. The unified method means that the proposed reliability approaches consider both conventional evaluation factor, i.e. sustained interruptions and additional ones, i.e. momentary interruptions and voltage sags. Because the three voltage quality phenomena generally originate from the outages on distribution systems, the basic and additional reliability indices are summarized considering the fault clearing mechanism. The proposed unified method is divided into the reliability evaluation for calculating the reliability indices and reliability cost evaluation for assessing the damage of customer. The analytic and probabilistic methodologies are presented for each unified reliability and its cost evaluation. The time sequential Monte Carlo technique is used for the probabilistic method. The proposed DVL(Demand Varying Load) model is added to the reliability cost evaluation substituting the average load model. The proposed methods are tested using the modified RBTS(Roy Billinton Test System) form and historical reliability data of KEPCO(Korea Electric Power Corporation) system. The daily load profile of the each customer type in domestic are gathered for the DVL model. Through the case studies, it is verified that the proposed methods can be effectively applied to the distribution systems for more detail reliability assessment than conventional approaches.

Identification of Correlative Transmission Lines for Stability Prediction

  • Cho, Yoon-Sung;Gilsoo Jang;Kwon, Sae-Hyuk;Yanchun Wang
    • KIEE International Transactions on Power Engineering
    • /
    • v.11A no.4
    • /
    • pp.15-20
    • /
    • 2001
  • Power system stability is correlated with system structure, disturbances and operating conditions, and power flows on transmission lines are closely related with those conditions. This paper proposes a methodology to identify correlative power flows for power system transient and small-signal stability prediction. In transient stability sense, the Critical Clearing Time is used to select some dominant contingencies, and Transient Stability Prediction index is proposed for the quantitative comparison. For small-signal stability discusses a methodology to identify crucial transmission lines for stability prediction by introducing a sensitivity factor based on eigenvalue sensitivity technique. On-line monitoring of the selected lines enables to predict system stability in real-time. Also, a procedure to make a priority list of monitored transmission lines is proposed. The procedure is applied to a test system, and it shows capabilities of the proposed method.

  • PDF