• Title/Summary/Keyword: clean flotation process

Search Result 7, Processing Time 0.025 seconds

Development of Treatment Process for Residual Coal from Biosolubilization

  • Rifella, Archi;Shaur, Ahmad;Chun, Dong Hyuk;Kim, Sangdo;Rhim, Young Joon;Yoo, Jiho;Choi, Hokyung;Lim, Jeonghwan;Lee, Sihyun;Rhee, Youngwoo
    • Clean Technology
    • /
    • v.24 no.2
    • /
    • pp.119-126
    • /
    • 2018
  • This study introduced a treatment process that was developed to treat Indonesian low-rank coal with high-ash content, which has the same characteristics as residual coal from the biosolubilization process. The treatment process includes separation of ash, solid-liquid separation, pelletizing, and drying. To reduce the ash content, flotation was performed using 4-methyl-2-pentanol (MIBC) as frother, and kerosene, waste oil, and cashew nut shell liquid (CNSL) as collectors. The increasing amount of collector had an effect on combustible coal recovery and ash reduction. After flotation, a filter press, extruder, and an oven drier were used to make a dried coal pellet. Then another coal pellet was made using asphalt as a binder. The compressive strength and friability of the coal pellets were tested and compared.

Study on the Treatment of Contaminated Lake Water Using Micro Air Bubbles (미세기포를 이용한 오염 호소수의 정화에 관한 연구)

  • Kim, Jun-Young;Park, Chang-Won;Lee, Jong-Kyung;Chang, In-Soung
    • Journal of Environmental Science International
    • /
    • v.16 no.6
    • /
    • pp.699-706
    • /
    • 2007
  • Many lakes or irrigative reservoirs in Korea are rapidly contaminated due to the ever increasing pollutants. Although lots of treatment processes have been recommended and practiced, economical and technical improvement is currently needed. In this study, contaminated irrigation reservoir was treated using the proposed process which is consisted of fine air bubbles, coagulation and flotation. Fine bubbles, approximate diameter of 3 to $10{\mu}m$, were generated using cavitation in the pressurized tank and polyaluminum chloride was used as coagulants. This fine bubbles, coagulation and flotation effectively controlled the low density algae, for example, Chlorophyll-a was removed more than 97 %. Removal efficiency of COD, SS, T-N and T-P were 80.7%, 94.3%, 64.1 % and 92.4%, respectively. Pollutants released from the sediments was removed more than 80% of organics and 60-70 % of nutrients. Consequently, fine bubbles coagulation and flotation process could be effectively used as an alternative treatment method for the purpose of control of lake water quality.

Clean Flotation Process to Recycle useful Materials from Fly Ash (비산재로부터 유용성분을 회수하는 청정부유선별공정)

  • Han, Gwang Su;Kim, Dul-Sun;Lee, Dong-Keun
    • Clean Technology
    • /
    • v.26 no.3
    • /
    • pp.177-185
    • /
    • 2020
  • All coal ash, generated from coal-fired power plants, is entirely dumped onto a landfill site. As coal ash contains 80% fly ash, a clean floating process was developed in this study to recover useful components from coal ash and to use them as high value-added industrial materials. When the unburned carbon (UC) was recovered from the fly ash, soybean oil, an eco-friendly vegetable oil, was used as collector instead of a non-ionic kerosene collector to prevent the occurrence of odor from the kerosene. After the UC was separated by flotation, particulate ceramic microsphere (CM) was recovered, without generating acidic wastewater, through hydro-cyclone instead of sulfuric acid solution in order to separate ceramic microsphere (CM) and cleaned ash (CA) from the residue. By utilizing soybean oil as a collector, the recovery rate of UC turned high at 85.8% due to the increased adsorption of UC, the high viscosity of soybean oil, and the increase in floating properties caused by the linoleic acid contained in soybean oil. All of the combustible components contained in the recovered UC were carbon components, with the carbon content registering high when soybean oil was used. The recovered UC had many pores with a rough surface; thus, it could be easily ground and then used as an industrial material for its fine particles. The CM and CA recovered by the clean separation process using hydro-cyclone had a spherical shape, and the particles were clearly separated without clumping together. The average diameter (D50) of the particles was 5 ㎛, so it was possible to realize the atomization of CM through a process change.

Recycling of Plant Fiber Resources: Enhanced Hydration of Newspaper Stock for Decrease of Deinking Reject (식물유래 섬유자원의 재활용: 탈묵 수율 개선을 위한 신문 지료의 수화 촉진 방안)

  • Chung, Sung-Hyun;Kim, Joong-Ho;Joo, Jong-Hun;Bang, Jae-Wook
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2011.10a
    • /
    • pp.39-41
    • /
    • 2011
  • The recycling rate of recovered paper in Korea is the highest in the world, 92%, but remanufacturing yield is low due to the extremely poor quality of the paper. The poor quality, in turn, influences to the reject amount in deinking process. To increase the yield of old newspaper recycling process, hydrophobic degree of inorganic pigments of deinking stock must be reduced. To determine the hydrophobicity, Pitch Potential Deposit Tester (PDT) was newly designed and applied with respect to the SB latex property of various quality used in Korea; its hydrophobic degree according to Tg, gel content, charge and particle size of latex and optimum designing condition of SB latex. And below are the conclusions: 1. The reason of excessive reject from old newspaper deinking process for total amount of printed ink is loss of inorganic pigments. When lipase, a biochemical catalyst, was applied with the purpose of preventing inorganic pigments loss about more than 70% of total reject weight and promoting hydration of pulp for deinking, deinking process yield of pre flotation secondary stage increased remarkably without any changes of deinking efficiency. 2. Lipase improved deinking stock by cutting ester linkage on surface of hydrophobic materials to promote its hydration. From this, it reached the conclusion that hydration degree of stock exercises significant effect on flotation deinking process yield. 3. Inorganic alkali promotes hydration of deinking stock. But there have been needs for more fundamental measures other than inorganic alkali of promoting hydration for yield improvement. For this, this study intended to find out reasons of chemical properties change on surface of hydrophobic material by change of pH. 4. Pitch Deposit Test (PDT) was performed for understanding principle of why surface of coating flake from OMG is hydrophobic and why it becomes hydrophilic when pH of stock is alkaline. As a result of this test, it is determined that swelling property by change of pH of latex film, which were used as coating adhesive is the reason for hydrophobic change. 5. Hydrophilicity of coating flake increased with hydrophilic pigments. And as more of SB Latex adhesive was used and higher of calcium hardness of stock became, its hydrophilicity decreased. SB Latex adhesive film is reformed by mechanical friction. For having hydrophilicity under neutral pH, strong bruising action such as kneading is required. 6. Because swelling of adhesive film decreases as Tg of SB latex gets lower and mean diameter gets smaller, it shows hydrophobicity under neutral pH. This lowers hydrophilicity of coating flake, which leads to easy elimination with flotation reject on DIP process. Therefore, for improving future flotation yield, it is necessary to develop to use eco-friendly clean SB latex by raising Tg and increasing mean diameter for recycling, and as a result, to reduce excessive loss of coating flake as a reject from deinking process.

  • PDF

Development History and Direction of On-site Algae Collecting System with Flotation Technology (부상분리 기술을 이용한 현장형 조류수거시스템의 발전 과정 및 개발 방향)

  • Kim, Jong Ik;Han, Ihn Sup;Mei, Qi Wen;Cho, Chong Joo;Jung, Soon Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.4
    • /
    • pp.194-200
    • /
    • 2017
  • On-site Algae Collecting System (OACS) is one of urgent countermeasures to clean the raw water when the algae blooms severely. Rapid reaction capability, high efficiency and large capacity are required when applying OACS to large water areas. The total performance of OACS are always determined by unit process named Flotation, Trapping and Collection. The working efficiency and daily treatment quantity of OACS can be increased when it runs automatically. As the rapid development of OACS technology, in the first place, equipment are miniaturized and simple. And in the second place, automation process from Trapping to Collection are advanced. So, They produce results higher working efficiency, smaller residual sludge on treated water, system's advanced environmental friendly features and the increased amount of sludge by Collection process to achieve large capacity. Now OACS has overcome the algae multiplication rate to ensured the amount of removal algae. In another aspect, it is high economically feasible because of reducing operation cost against the large capacity.

Recycling of useful Materials from Fly Ash of Coal-fired Power Plant (석탄화력발전소에서 발생되는 비회로부터 유용성분의 회수)

  • Kim, Dul-Sun;Han, Gwang Su;Lee, Dong-Keun
    • Clean Technology
    • /
    • v.25 no.3
    • /
    • pp.179-188
    • /
    • 2019
  • Upon the combustion of coal particles in a coal-fired power plant, fly ash (80%) and bottom ash (20%) are unavoidably produced. Most of the ashes are, however, just dumped onto a landfill site. When the landfill site that takes the fly ash and bottom ash is saturated, further operation of the coal-fired power plant might be discontinued unless a new alternative landfill site is prepared. In this study, wet flotation separation system (floating process) was employed in order to recover unburned carbon (UC), ceramic microsphere (CM) and cleaned ash (CA), all of which serving as useful components within fly ash. The average recovered fractions of UC, CM, and CA from fly ash were 92.10, 75.75, and 69.71, respectively, while the recovered fractions of UC were higher than those of CM and CA by 16% and 22%, respectively. The combustible component (CC) within the recovered UC possessed a weight percentage as high as 52.54wt%, whereas the burning heat of UC was estimated to be $4,232kcal\;kg^{-1}$. As more carbon-containing UC is recovered from fly ash, UC is expected to be used successfully as an industrial fuel. Owing to the effects of pH, more efficient chemical separations of CM and CA, rather than UC, were obtained. The average $SiO_2$ contents within the separated CM and CA had a value of 53.55wt% and 78.66wt%, respectively, which is indicative of their plausible future application as industrial materials in many fields.

Agglomeration of fine anthracite using oil and modified styrene (Oil과 Modified Styrene을 사용(使用)한 미립(微粒) 무연탄(無煙炭)의 응집(凝集))

  • Lee, Jae-Jang;Jang, Dong-Sung
    • Journal of Industrial Technology
    • /
    • v.7
    • /
    • pp.27-47
    • /
    • 1987
  • Fine anthracite is very difficult to upgrade by conventional processes such as gravity concentration or froth flotation, because large quantities of fine coals are generated at the mining and preparation stages and a significant portion of these fine coals are mixed with gangue minerals. This study, therefore, was carried out for the purpose of improving recovery of low ash clean coal, effective beneficiation of low-grade coking coal and removal of sulphur from high-sulphur coals by employing the method of selective agglomeration using oil or polystrene flocculants, for coals which are generally hydrophobic in nature will be extracted by using flocculants. Studies were performed by varying solid concentration, concetration of bridging liquid, mixing speed and mixing time, balling speed and balling time, dispersant dosage, flocculant dosage, pulp pH, and particle size. The results were : when the methods of the oil agglomeration and selective flocculation were employ(in the two process the sample was ground to the size of -74 micron), 1) ash content of the agglomerated coal was 9.85, 7.83%, 2) combustibel recovery of it was 98.5%, 93.5%, respectively. It was observed in selective flocculation that polystyrene is an effective flocculant for coal, De-entrapment of shale from the concentrate flocculated by mechanical agitation was necessary for substantional reductions in final ash content.

  • PDF