• Title/Summary/Keyword: clay content

Search Result 1,001, Processing Time 0.025 seconds

Use of the Quantitatively Transformed Field Soil Structure Description of the US National Pedon Characterization Database to Improve Soil Pedotransfer Function

  • Yoon, Sung-Won;Gimenez, Daniel;Nemes, Attila;Chun, Hyen-Chung;Zhang, Yong-Seon;Sonn, Yeon-Kyu;Kang, Seong-Soo;Kim, Myung-Sook;Kim, Yoo-Hak;Ha, Sang-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.944-958
    • /
    • 2011
  • Soil hydraulic properties such as hydraulic conductivity or water retention which are costly to measure can be indirectly generated by soil pedotransfer function (PTF) using easily obtainable soil data. The field soil structure description which is routinely recorded could also be used in PTF as an input to reduce the uncertainty. The purposes of this study were to use qualitative morphological soil structure descriptions and soil structural index into PTF and to evaluate their contribution in the prediction of soil hydraulic properties. We transformed categorical morphological descriptions of soil structure into quantitative values using categorical principal component analysis (CATPCA). This approach was tested with a large data set from the US National Pedon Characterization database with the aid of a categorical regression tree analysis. Six different PTFs were used to predict the saturated hydraulic conductivity and those results were averaged to quantify the uncertainty. Quantified morphological description was successively used in multiple linear regression approach to predict the averaged ensemble saturated conductivity. The selected stepwise regression model with only the transformed morphological variables and structural index as predictors predicted the $K_{sat}$ with $r^2$ = 0.48 (p = 0.018), indicating the feasibility of CATPCA approach. In a regression tree analysis, soil structure index and soil texture turned out to be important factors in the prediction of the hydraulic properties. Among structural descriptions size class turned out to be an important grouping parameter in the regression tree. Bulk density, clay content, W33 and structural index explained clusters selected by a two step clustering technique, implying the morphologically described soil structural features are closely related to soil physical as well as hydraulic properties. Although this study provided relatively new method which related soil structure description to soil structure index, the same approach should be tested using a datasets containing the actual measurement of hydraulic properties. More insight on the predictive power of soil structure index to estimate hydraulic properties would be achieved by considering measured the saturated hydraulic conductivity and the soil water retention.

Investigation on the Key Parameters for the Strengthening Behavior of Biopolymer-based Soil Treatment (BPST) Technology (바이오폴리머-흙 처리(BPST) 기술의 강도 발현 거동에 대한 주요 영향인자 분석에 관한 연구)

  • Lee, Hae-Jin;Cho, Gye-Chum;Chang, Ilhan
    • Land and Housing Review
    • /
    • v.12 no.3
    • /
    • pp.109-119
    • /
    • 2021
  • Global warming caused by greenhouse gas emissions has rapidly increased abnormal climate events and geotechnical engineering hazards in terms of their size and frequency accordingly. Biopolymer-based soil treatment (BPST) in geotechnical engineering has been implemented in recent years as an alternative to reducing carbon footprint. Furthermore, thermo-gelating biopolymers, including agar gum, gellan gum, and xanthan gum, are known to strengthen soils noticeably. However, an explicitly detailed evaluation of the correlation between the factors, that have a significant influence on the strengthening behavior of BPST, has not been explored yet. In this study, machine learning regression analysis was performed using the UCS (unconfined compressive strength) data for BPST tested in the laboratory to evaluate the factors influencing the strengthening behavior of gellan gum-treated soil mixtures. General linear regression, Ridge, and Lasso were used as linear regression methods; the key factors influencing the behavior of BPST were determined by RMSE (root mean squared error) and regression coefficient values. The results of the analysis showed that the concentration of biopolymer and the content of clay have the most significant influence on the strength of BPST.

Identification of ecological characteristics of Deciduous broad-leaved forest, Garasan(Mt.)·Nojasan(Mt.) at GeoJae (거제도 가라산·노자산 일대 낙엽활엽수림의 생태적 특성 규명)

  • Lee, Soo-Dong;Cho, Bong-Gyo;Lee, Gyounggyu;Yeum, Jung-Hun;Oh, Chung-Hyeon
    • Korean Journal of Environment and Ecology
    • /
    • v.35 no.2
    • /
    • pp.204-219
    • /
    • 2021
  • This study was conducted to investigate and analyze the characteristics of the plant community structure of vegetation distributed on the western slope and ridge connecting Mt. Noja to Mt. Gara. This basic research was executed not only to restore and manage forest vegetation, but also to monitor the trend of change in the long term. As a result of classifying the communitise in 86 survey quadrats, the Pinus thunbergii-Platycarya strobilacea comm. and P. thunbergii-P. densiflora comm. were distributed around the lowlands. The Carpinus tschonoskii-Deciduous broad-leaved comm., Styrax japonicus-Deciduous broad-leaved comm., Acer pictum subsp. Mono-Deciduous broad-leaved comm., Deciduous broad-leaved comm., and Zelkova serrata comm. appeared in the valley and all stone areas. Quercus serrata comm., Q. serrata-S. japonicus comm., S. japonicus-Carpinus cordata comm., Euonymus oxyphyllus comm. were classified as being distributed on steep slopes with relatively high altitude. According to the succession trend of the forest, evergreen conifers will be transition to deciduous broad-leaved trees. However, deciduous broad-leaved arboreous forests, such as Carpinus tschonoskii, zelkova serrata, and Acer pictum subsp. Mono, were considered to maintain their current succession stage because not only the stratified structure was developed over about 50 years tree age, but also ecologically stabilized. As environmental factors, it was analyzed that altitude, pH, content of clay and silt, Mg++, Ca++, etc. directly or indirectly affect the distribution of plant communities.

Study on Manufacturing Techniques of Bracket Mural Paintings of Daeungbojeon Hall in Naesosa Temple (내소사 대웅보전 포벽화 제작기법 연구)

  • Lee, Hwa Soo;Lee, Na Ra;Han, Gyu-Seong
    • Journal of Conservation Science
    • /
    • v.34 no.6
    • /
    • pp.557-568
    • /
    • 2018
  • The manufacturing techniques were studied by investigating a precise analysis on wall structure, features of materials and the painting layer of the bracket mural paintings at Daeungbojeon Hall in Naesosa temple. The wall frame is a single-branch structure, and The mural paintings are composed of 3 layers which are a support layer, a finishing layer and a painting layer. The support layer and the finishing layer are an earth wall that sand and clay such as Quartz, Feldspar, and etc. are mixed. The support and the finishing layers have a combination of medium particle sand and smaller than fine particle sand in the approximate ratios of 0.8:9.2 and 6:4, respectively. Therefore, the aforementioned ratio of sand with medium or large particles is relatively higher in the finishing layer than the support layer. As a result of a precise analysis on the painting layer, it has a relatively thick ground layer for painting which is maximum $456.15{\mu}m$ by using Celadonite or Glauconite and the paintings were colored by using pigments such as Atacamite, Kaolinite or Halloysite, Oxidized steel, and etc. on it. The manufacturing style and the painting techniques of an earth wall are included in the category of the Joseon Dynasty style that have been studied up to now, but the facts that the finishing layer has a high content of sand and a middle layer and chopped straw have not been identified. These are remarkable points in terms of structure and materials, and can be crucial in the evaluation of the state of conservation of mural paintings or preparation of a conservation plan.

Evaluation of Fluoride Distribution, Fate and Transport Characteristics in Soils (토양 중 불소 분포 및 거동 특성 평가)

  • Lim, Ga-Hee;Lee, Hong-Gil;Kim, Hyoung-Seop;Noh, Hoe-Jung;Ko, Hyoung-Wook;Kim, Ji-In;Jo, Hun-Je;Kim, Hyun-Koo
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.6
    • /
    • pp.90-103
    • /
    • 2018
  • Although fluoride is an essential trace element, ingestion of excessive amount of fluoride could have detrimental effect on human health. Generally, the bioavailability of fluoride in soils was low, but it could be harmful to the environment depending on the soil properties. Therefore, it is necessary to understand the concentration distribution, and fate and transport characteristics of fluoride to establish a resonable management strategy for fluoride pollution. This study was conducted to evaluate nationwide fluoride distribution in soils in Korea, as well as its fate and transport characteristics. The average background concentration was 204.5 (15.3~504.8) mg/kg, which is lower than the values of foreign soils. For the three regions of different land use, the average concentration was 229.6 mg/kg in region 1, 195.7 mg/kg in region 2, and 273.4 mg/kg in region 3. The concentration of fluoride was the highest in soils from Youngnam block within tectonic structure derived from metamorphic rocks. The results of sequential extraction to access F bioavailability showed fluoride in soils mainly existed as a residual form, which suggests the bioavailability of fluoride was relatively low. Soil properties such as soil pH, CEC, and clay content were found to affect F bioavailability of soil.

Strength and Compaction Characteristics of Binder-Stabilized Subgrade Material in Ulsan Area - Main Binder Components : CaO and SO3 - (고화제로 안정처리 된 울산지역 노상재료의 강도 및 다짐특성 - 주 성분이 CaO와 SO3인 고화제 -)

  • Han, Sang-Hyun;Yea, Geu-Guwen;Kim, Hong-Yeon
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.12
    • /
    • pp.105-113
    • /
    • 2018
  • In this study, the engineering properties including bearing capacity of subgrades stabilized with a binder are analyzed by laboratory and field experiments. The main components of the binder are CaO and $SO_3$. After the binder was mixed with a low plasticity clay, the passing rates were relatively decreased as the sieve mesh size increased. Not only did the soil type change to silty sand, but engineering properties, such as the plasticity index and modified California bearing ratio (CBR), were improved for the subgrade. A comparison of the compaction curves of the stabilized subgrade and field soil compacted with the same energy demonstrated an increase of approximately 6% in the maximum dry unit weight, slight decrease in optimum moisture content, and considerable increase improvement in grain size. In the modified CBR test, the effect of unit weight and strength increase of the modified soil (with a specific amount of binder) was remarkably improved. As the proportion of granulated material increased after the addition of binder, the swelling was reduced by 3.3 times or more during initial compaction and 6.5 times by final compaction. The unconfined compressive strength of the specimens was maintained at the homogeneous value with a constant design strength. The stabilized subgrade was validated by applying it in the field under the same conditions; this test demonstrated that the bearing capacity coefficients at all six sites after one day of compaction exceeded the target value and exhibited good variability.

Soil Properties of Granitic Weathered Soils in the Landslide-prone Areas in Seoul (서울지역 화강암 풍화토 토층지반의 토질특성)

  • Kim, Kyeong-Su
    • The Journal of Engineering Geology
    • /
    • v.29 no.1
    • /
    • pp.23-35
    • /
    • 2019
  • Landslides occur due to heavy rainfall in the summer season. Some of water may infiltrate into the ground; it causes a high saturation condition capable of causing a landslide. Soil properties are crucial in estimating slope stability and debris flow occurrence. The main study areas are Gwanaksan, Suraksan and Bukhansan (Mountain) in Seoul. A total of 44 soil samples were taken from the study area; and a series of geotechnical tests were performed. Physical and mechanical properties were obtained and compared based on region. As a result, among well-graded soils, they are classified as a clayey sand. Coarse-grained and fine-grained contents are approximately 95% and 5%, respectively, with very low amount of clay content. Density, liquid limit and dry unit weight are ranged in $2.62{\sim}2.67g/cm^3$, 27.93~38.15% and $1.092{\sim}1.814g/cm^3$. Cohesion and internal friction angle are 4 kPa and $35^{\circ}$ regardless of mountain area. Coefficient of permeability is varied between $3.07{\times}10^{-3}{\sim}4.61{\times}10^{-2}cm/sec$; it means that it results in great seepage. Permeability is inversely proportional to the uniformity coefficient and is proportional to the effective particle size. In the formal case, there was a difference by mountain area, while in the latter, the tendency was almost similar.

Characteristics of Filtration Treatment Using Diatomite Filter Aids for Sewage Water Reuse (하수처리수 재이용을 위한 가압식 규조토 여과의 처리성능평가)

  • Lim, Byung Ran;Kim, Hee Seo;Go, Yeon Sil;Kim, Hyun Kab;Kim, Jong Hak;Lee, Tae Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.2
    • /
    • pp.145-151
    • /
    • 2019
  • The purpose of this study was to investigate treatment characteristics of diatomite filtration, that would allow water recovery from biologically-treated effluent for reuse. Diatomite, Celpure 100, and acid clay were used as filter-aids, with a support filter manufactured from polyethylene (PE), and polypropylene (PP). This pre-coating process using diatomite filter-aids, is used in the filtration range of pressure filters, and has consistently provided high-quality separation. The results showed that variations in average removal efficiency of SS, and T-P from biologically treated effluent by the diatomite-coated PE filter, were approximately 82.2 ~ 88.9 % and 4.8 ~ 21.1 %, respectively. T-P treatment efficiency of the PP filter pre-coated with diatomite and $Celpure^{(R)}100$ at $57.64g/m^2$, was approximately $24{\pm}10%$ and $40{\pm}15%$ on average, respectively. Particle size distribution of secondary effluent varied from 0.05 to $200{\mu}m$, and $d_{50}$ value was $20.76{\mu}m$. The size distribution of particles in the diatomite filtrate ranged from 1.26 to $101.1{\mu}m$ when pre-coated with diatomite filter-aid, at a content of $57.64g/m^2$. Diatomite filter aids, i.e., the particles that form the pre-coating layer, capture very fine particles as well as macromolecules, owing to their complex structure with numerous fine microscopic pores, and surface properties. The filtration process using diatomite and $Celpure^{(R)}100$ as filter aids, has been successfully applied, to recover water from sewage for reuse. The disadvantage of the process, is that the particle size of the filter-aid is spent, because of pressurization.

Assessment of Contribution of Climate and Soil Factors on Alfalfa Yield by Yield Prediction Model (수량예측모델을 통한 Alfalfa 수량에 영향을 미치는 기후요인 및 토양요인의 기여도 평가)

  • Kim, Ji Yung;Kim, Moon Ju;Jo, Hyun Wook;Lee, Bae Hun;Jo, Mu Hwan;Kim, Byong Wan;Sung, Kyung Il
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.41 no.1
    • /
    • pp.47-55
    • /
    • 2021
  • The objective of this study was to access the effect of climate and soil factors on alfalfa dry matter yield (DMY) by the contribution through constructing the yield prediction model in a general linear model considering climate and soil physical variables. The processes of constructing the yield prediction model for alfalfa was performed in sequence of data collection of alfalfa yield, meteorological and soil, preparation, statistical analysis, and model construction. The alfalfa yield prediction model used a multiple regression analysis to select the climate variables which are quantitative data and a general linear model considering the selected climate variables and soil physical variables which are qualitative data. As a result, the growth degree days(GDD) and growing days(GD), and the clay content(CC) were selected as the climate and soil physical variables that affect alfalfa DMY, respectively. The contributions of climate and soil factors affecting alfalfa DMY were 32% (GDD, 21%, GD 11%) and 63%, respectively. Therefore, this study indicates that the soil factor more contributes to alfalfa DMY than climate factor. However, for examming the correct contribution, the factors such as other climate and soil factors, and the cultivation technology factors which were not treated in this study should be considered as a factor in the model for future study.

Properties of Pohang Mudstone with High Porosity According to Water Immersion (수침에 따른 공극률이 큰 포항 이암의 특성)

  • Kim, Byung-Soo;Lee, Yun-Jae;Kim, Tae-Hyung;Kim, Byeong-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.11
    • /
    • pp.83-92
    • /
    • 2021
  • In this study, effective porosity measurement, electron microscope (SEM) observation, X-ray diffraction analysis (XRD), slaking, swelling, and unconfined compression strength according to water immersion were analyzed to evaluate the properties of mudstone with high porosity in Pohang. As a result of the test for 16 square samples (5 cm), the effective porosity was 14.67% on average, higher than porosity of general mudstone, and electron microscope observation confirmed that the porosity was actually high. As a result of X-ray diffraction analysis, the swelling clay mineral content was 2.3~4.1%, which was lower than the results of previous studies in Pohang. The slake durability index was 37.73~87.73%, showing low to medium durability, which was lower than the results of previous studies. It was confirmed that the swelling property rapidly expanded to 1.79~1.82% of maximum swelling strain in the major axis direction for 30 minutes. As the properties of decreasing the unconfined compression strength according to water immersion, the samples rapidly weathered after 10 minutes of water immersion, and the strength decreased. It was confirmed that the results of previous studies related to mudstone in Pohang were different. This is judged to be due to the high porosity of mudstone in study.