• Title/Summary/Keyword: clay content

Search Result 988, Processing Time 0.035 seconds

Development of $Al_2TiO_5$-Clay Composites for Infrared Radiator ($Al_2TiO_5$-점토 복합체를 이용한 적외선 방사체의 개발)

  • 신대용;한상목
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.2
    • /
    • pp.122-127
    • /
    • 2000
  • The thermal expansion, thermal stability, mechanical strength and infrared radiative property of Al2TiO5-clay composites, prepared from synthesized Al2TiO5 and clay, were investigated to develop a material for far infrared radiators. The emittance of composites containing 10~50 wt% clay, heated at 1,20$0^{\circ}C$ for 3 h, increased with increasing clay content and emittance was about 0.3 and 0.92 in the ranges of 3,400~2,500 cm-1 and 2,500~400cm-1, respectively. The bulk density and bending strength of the Al2TiO5-clay composites increased with increasing clay content. 50 wt% Al2TiO5-50 wt% clay composite, heat-treated at 1,20$0^{\circ}C$, had an adequate strength for infrared radiators; 80 MPa. The degree of thermal expansion hysteresis decreased with increasing clay content and the mean thermal expansion coefficient increased with increasing clay content. The thermal expansion coefficient of 50 wt% Al2TiO5-50 wt% clay composite heated at 1,20$0^{\circ}C$ was 5.78$\times$10-6/$^{\circ}C$.

  • PDF

An Experimental Study on the Properties of Lightweight Concrete Using Expanded Clay (팽창점토를 사용한 경량콘크리트의 특성에 관한 실험적 연구)

  • Kim, Jong-In;Choi, Young-Wha;Ha, Sang-Jin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.3
    • /
    • pp.225-232
    • /
    • 2002
  • The purpose of this study is to find the mechanical properties of lightweight concrete using expanded clay. Thus, slump, air content, compressive strength, elastic modulus, tensile strength, length change ratio, unitweight change ratio and absorption of lightweight concrete have been investigated. The conclusions of this study are as follows ; 1. The loss of slump and air content of concrete increased as the expanded clay content increased and the size of coarse aggregate decreased. 2. The compressive strength of concrete using 100% expanded clay of 13, 19mm size at 28 days were respectively 282, $252kgf/cm^2$. 3. The elastic modulus and tensile strength of concrete decreased with increase of expanded clay content. 4. The length change ratio of concrete increased with the larger coarse aggregate size, and decreased with the increase of expanded clay content. 5. The unit weight of concrete decreased with the increase of expanded clay content, and the ratio of that was larger at the early age.

  • PDF

Effect of rate of strain on the strength parameters of clay soil stabilized with cement dust by product

  • Radhi M Alzubaidi;Kawkab Selman;Ayad Hussain
    • Geomechanics and Engineering
    • /
    • v.37 no.4
    • /
    • pp.419-429
    • /
    • 2024
  • The primary goal was to assess how the addition of cement dust, a byproduct known to be harmful, could be used to stabilize clay. Various percentages of cement dust were added to soil samples, which were then subjected to triaxial testing at different rates of strain using an unconsolidated undrained triaxial machine. Six different rates of strain were applied to analyze the response of the clay under different conditions, resulting in 216 triaxial sample tests. As the percentage of cement dust in the clay samples increased, there was a noticeable increase in the strength properties of the clay, indicating a positive effect of cement dust on the clay's strength characteristics. Higher rates of strain during testing led to increased strength properties of the clay. Varying cement dust content influenced the impact of increasing the rate of strain on the clay's strength properties. Higher cement dust content reduced the sensitivity of the clay to changes in strain rate, indicating that the clay became less responsive to changes in strain rate as cement dust content increased. Potential for Clay Stabilization Cement dust proved the potential to enhance the strength properties of clay, indicating its potential utility in clay stabilization applications. Both higher percentages of cement dust and higher rates of strain were found to increase the clay's strength. It's essential to consider both the percentage of cement dust and the rate of strain when assessing the strength properties of clay in practical applications.

Strength Characteristics of Light-Weight Cement mind Marine Clay with Foam (경량기포혼합 준설토의 강도특성)

  • 박건태;김주철;윤길림;이종규
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.483-490
    • /
    • 2002
  • A massive amount of marine clay produced as dredging of coast and sea bed is often dumped in open sea and filled in pond. The treatment of marine clay demand a large area and make fatal environmental problems for echo system. This research work intend to manufacture a light-weight landfill materials which are produced by mixing the dredged marine clay with various amount cement and foam. An extensive Uniaxial and Triaxial compression test are carried out to investigate the strength characteristics of the light-weight cement mixed marine clay with foam under various test conditions. The results indicated that the required unit weight has been achieved with negligible change after 28days curing time in water. It is also recognized that the compressive strength of light-weight landfill materials linearly decrease with increasing initial water content, and the rate of strength decrease with increasing initial water content in water curing was smaller than that of air curing Futhermore, the rate of strength decreased with increasing initial water content, however, the rate become smaller as cement content increased.

  • PDF

Correlation Between Engineering Properties and Mineralogy of Clay Sediments in the Estuary of the Nakdong River (낙동강 하구지역 점토퇴적물의 광물조성과 토질물성과의 상관관계)

  • Lee Sonkap;Kim Jin-Seop;Um Jeong-Gi;Hwang Jin-Yeon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.93-107
    • /
    • 2005
  • The estuary of Nakdong River area including Noksan industrial complex and Busan New Port is composed of thick unconsolidified sediments containing abundant clay, and thus is a potential hazardous area of ground subsidence. We analyzed mineral compositions and geotechnical properties of the clay sediments that sampled from 4 boreholes of the area, and examined vertical variations and their correlations. The results showed correlations between some mineral constituents and geotechnical properties of clay sediments. A positive correlation showed between quartz content and wet unit weight, whereas a negative correlation showed between quartz content and liquid limit. Feldspar content and water content showed a negative correlation, whereas content of clay minerals and liquid limit showed a positive correlation. And also, there is a negative correlation between content of clay minerals and wet unit weight. Correlation equations are obtained from the multiple regression analyses among plastic index, content of clay mineral, smectite and clay fraction.

Ethylene Gas Adsorption of Clay-Woodceramics from 3 layers-clay-woodparticleboard

  • Lee, Hwa Hyoung;Kang, Seog-Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.83-88
    • /
    • 2003
  • The woodceramics are porous amorphous carbon and glassy carbon composite materials. Woodceramics attracted a lot of attention in recent years because they are environmentally friendly and because of their unique functional characteristics such as catalysis, moisture absorption, deodorization, purification, carrier for microbial activity, specific stiffness, corrosion and friction resistance, and their electromagnetic shielding capacity. In this paper, we made new products of clay-woodceramics to investigate the industrial analysis and ethylene gas adsorption for basic data of building- and packging- materials keeping fruit fresh for a long time. Clay-woodceramics were carbonized for 3 h of heating in a special furnace under a gas flow of nitrogen(15 ml/min.) from 3 layers-clay-woodparticleboard made from pallet waste wood, phenol- formaldehyde resin(hereafter PF, Non volatile content:52%, resin content 30%), and clay(10%, 20% and 30%). Carbonization temperature was 400℃, 600℃ and 800℃. Experimental results shows that the higher the carbonization temperature, the higher the fixed carbon and the lower the volatile contents. The higher the clay content, the more the ash content. The higher the carbonization temperature, the more the ethylene gas adsorption. Carbonization temperature of 800℃ gave the best reslts as same as that of white charcoal and activated carbon.(800℃-clay-woodceramic: 5.36 ppm, white charcoal: 5.66 ppm, activated carbon: 5.79 ppm) The clay contents did not make difference of ethylene gas adsoption.

Experimental study on water exchange between crack and clay matrix

  • Song, Lei;Li, Jinhui;Garg, Ankit;Mei, Guoxiong
    • Geomechanics and Engineering
    • /
    • v.14 no.3
    • /
    • pp.283-291
    • /
    • 2018
  • Cracks in soil provide significant preferential pathways for contaminant transport and rainfall infiltration. Water exchange between the soil matrix and crack is crucial to characterize the preferential flow, which is often quantitatively described by a water exchange ratio. The water exchange ratio is defined as the amount of water flowing from the crack into the clay matrix per unit time. Most of the previous studies on the water exchange ratio mainly focused on cracked sandy soils. The water exchange between cracks and clay matrix were rarely studied mainly due to two reasons: (1) Cracks open upon drying and close upon wetting. The deformable cracks lead to a dynamic change in the water exchange ratio. (2) The aperture of desiccation crack in clay is narrow (generally 0.5 mm to 5 mm) which is difficult to model in experiments. This study will investigate the water exchange between a deformable crack and the clay matrix using a newly developed experimental apparatus. An artificial crack with small aperture was first fabricated in clay without disturbing the clay matrix. Water content sensors and suction sensors were instrumented at different places of the cracked clay to monitor the water content and suction changes. Results showed that the water exchange ratio was relatively large at the initial stage and decreased with the increasing water content in clay matrix. The water exchange ratio increased with increasing crack apertures and approached the largest value when the clay was compacted at the water content to the optimal water content. The effective hydraulic conductivity of the crack-clay matrix interface was about one order of magnitude larger than that of saturated soil matrix.

Synthesis and Properties of Exfoliated Poly(methyl methacrylate-co-acrylonitrile)/Clay Nanocomposites via Emulsion Polymerization

  • Mingzhe Xu;Park, Yeong-Suk;Wang, Ki-Hyun;Kim, Jong-Hyun;Chung, In-Jae
    • Macromolecular Research
    • /
    • v.11 no.6
    • /
    • pp.410-417
    • /
    • 2003
  • Poly(methyl methacrylate-co-acrylonitrile) [P(MMA-co-AN)]/Na-MMT nanocomposites were synthesized through emulsion polymerization with pristine Na-MMT. The nanocomposites were exfoliated up to 20 wt% content of pristine Na-MMT relative to the amount of MMA and AN, and exhibited enhanced storage moduli, E', relative to the neat copolymer. The exfoliated morphology of the nanocomposite was confirmed by XRD and TEM. 2-Acryla-mido-2-methyl-1-propane sulfonic acid (AMPS) widened the galleries between the clay layers before polymerization and facilitated the comonomers, penetration into the clay to create the exfoliated nanocomposites. The onset of the thermal decomposition of the nanocomposites shifted to a higher temperature as the clay content increased. By calculating areas of tan$\delta$ of the nanocomposites, we observed that the nanocomposites show more solid-like behavior as the clay content increases. The dynamic storage modulus and complex viscosity increased with clay content. The complex viscosity showed shear-thinning behavior as the clay content increased. The Young's moduli of the nano-composites are higher than that of the neat copolymer and they increase steadily as the silicate content increases, as a result of the exfoliated structure at high clay content.

Statistically estimated storage potential of organic carbon by its association with clay content for Korean upland subsoil

  • Han, Kyung-Hwa;Zhang, Yong-Seon;Jung, Kang-Ho;Cho, Hee-Rae;Seo, Mi-Jin;Sonn, Yeon-Kyu
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.3
    • /
    • pp.353-359
    • /
    • 2016
  • Soil organic carbon (SOC) retention has gradually gotten attention due to the need for mitigation of increased atmospheric carbon dioxide and the simultaneous increase in crop productivity. We estimated the statistical maximum value of soil organic carbon (SOC) fixed by clay content using the Korean detailed soil map database. Clay content is a major factor determining SOC of subsoil because it influences the vertical mobility and adsorption capacity of dissolved organic matter. We selected 1,912 soil data of B and C horizons from 13 soil series, Sangju, Jigog, Jungdong, Bonryang, Anryong, Banho, Baegsan, Daegog, Yeongog, Bugog, Weongog, Gopyeong, and Bancheon, mainly distributed in Korean upland. The ranges of SOC and clay content were $0-40g\;kg^{-1}$ and 0 - 60%, respectively. Soils having more than 25% clay content had much lower SOC in subsoil than topsoil, probably due to low vertical mobility of dissolved organic carbon. The statistical analysis of SOC storage potential of upland subsoil, performed using 90%, 95%, and 99% maximum values in cumulative SOC frequency distribution in a range of clay content, revealed that these results could be applicable to soils with 1% - 25% of clay content. The 90% SOC maximum values, closest to the inflection point, at 5%, 10%, 15%, and 25% of clay contents were $7g\;kg^{-1}$, $10g\;kg^{-1}$, $12g\;kg^{-1}$, and $13g\;kg^{-1}$, respectively. We expect that the statistical analysis of SOC maximum values for different clay contents could contribute to quantifying the soil carbon sink capacity of Korean upland soils.

The Effect of Clay Concentration on Mechanical and Water Barrier Properties of Chitosan-Based Nanocomposite Films

  • Rhim, Jong-Whan
    • Food Science and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.925-930
    • /
    • 2006
  • Chitosan-based nanocomposite films were prepared using a solution intercalation method incorporating varying amounts of organically modified montmorillonite (Cloisite 30B) from 0 to 30 wt%. The nanocomposite films prepared were optically clear despite a slight decrease in the transmittance due to the spatial distribution of nanoclay. X-ray diffraction patterns indicated that a certain degree of intercalation or exfoliation formed when the amount of clay in the film was low and that microscale tactoids formed when the clay content in the sample was high (more than 10 wt%). The tensile strength (TS) of the chitosan film increased when the clay was incorporated up to 10 wt% and then decreased with further increases in the clay content of the film. The elongation at break (E) increased slightly upon the addition of low levels of clay up to 5 wt% and then decreased with further increases in the amount of the clay in the film. The water vapor permeability (WVP) decreased exponentially with increasing clay content. The water solubility (WS) and swelling ratio (SR) of the nanocomposite films decreased slightly, indicating that the water resistance of the chitosan film increased due to the incorporation of the nanoclay.